
164

International Education Forum, 2025, Volume 3, Issue 12
http://ojs.bbwpublisher.com/index.php/IEF

Online ISSN: 2981-8605
Print ISSN 3083-4902

Exploration of a Dual-Helix-Driven Practical 
Teaching Model Integrating PDCA Cycle and 
Aerospace Cases
Jinli Li*

School of Space Information, Space Engineering University, Beijing 101416, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: Aiming at the problems existing in traditional programming practice courses, such as fragmented cases, 
insufficient integration of aerospace scenarios, and a lack of process-oriented assessment, an innovative dual-helix-
driven teaching model is proposed. Taking the Beidou Satellite Navigation System as a cross-cutting case, this model 
deeply integrates the PDCA (Plan-Do-Check-Act) quality management theory to construct a dual-helix teaching 
framework of “aerospace case traction + PDCA cycle control”. By embedding core knowledge points such as Python 
syntax, data structures, and algorithm design into aerospace application scenarios, including Beidou satellite orbit 
calculation, positioning solution, and data visualization, the synergistic improvement of theoretical knowledge and 
application capabilities is realized. 

Keywords: PDCA Cycle; Aerospace cases; PBL; Programming course; Process-oriented assessment; Engineering 
literacy

Online publication: December 31, 2025

1. Introduction
With its concise syntax, efficient numerical computing capabilities, and rich scientific computing libraries, 
Python has become a key tool for core aerospace tasks such as satellite orbit prediction, remote sensing data 
processing, and spacecraft control algorithm verification [1]. The “Basic Requirements for College Computer 
Foundation Courses Teaching (2021 Edition)” issued by the Ministry of Education clearly points out that 
programming courses should strengthen practical attributes, promote in-depth integration with professional 
scenarios, and cultivate students’ computational thinking and engineering application capabilities [2,3]. For 
science and engineering universities with aerospace characteristics as the core, Python programming is a core 
basic course, and its teaching quality directly affects students’ learning effects in subsequent professional 
courses and the formation of engineering literacy.



165 Volume 3, Issue 12

However, the current practical teaching of Python programming in our university has three major 
pain points that seriously restrict the improvement of talent training quality. Firstly, fragmented cases: 
the adoption of a teaching method of “grammar points + isolated cases” lacks a large cross-cutting case 
throughout the course, making it difficult for students to connect scattered knowledge points to form a 
complete knowledge system. Secondly, lack of aerospace scenarios: Python is not closely combined with 
aerospace application scenarios such as Beidou navigation and satellite communication, making it difficult 
for students to understand the application value of Python technology in actual engineering and resulting in 
insufficient learning motivation and goals. Thirdly, insufficient process-oriented assessment: over-reliance 
on final programming exams, lack of continuous evaluation of processes such as code standardization and 
performance optimization, which can neither fully reflect students’ true abilities nor timely identify problems 
in the teaching process. This leads to students’ insufficient engineering-oriented programming thinking and 
rigor, failing to meet the high standards for talents in the aerospace field. Therefore, there is an urgent need to 
construct a new Python teaching model adapted to aerospace professional characteristics through systematic 
teaching method research, so as to comprehensively improve students’ computational thinking abilities.

2. Research status
Universities at home and abroad attach importance to the combination of case-driven teaching and Project-
Based Learning (PBL) in practical teaching [4]. The Massachusetts Institute of Technology (MIT) provides 
a large number of course resources and project examples integrating Python with artificial intelligence and 
simulation computing through its OpenCourseWare (OCW) [5]; Stanford University’s projects such as “Code 
in Place” have developed systematic Python teaching cases, emphasizing the connection of knowledge 
points with professional applications through community-based learning and real projects [6]. Focusing on the 
application of online platforms and blended teaching, Wang Qiang et al. constructed a Python programming 
teaching plan based on the EduCoder platform, improving students’ practical abilities through automatic 
evaluation and online training [7]. However, existing research still has shortcomings: most cases lack 
professional pertinence and fail to form a systematic characteristic case throughout the course [8]; insufficient 
attention is paid to the dynamic control of the teaching process, making it difficult to achieve closed-loop 
optimization of “teaching - learning – assessment.”

As a quality management tool for continuous improvement, the PDCA (Plan-Do-Check-Act) cycle has 
been widely applied in the field of education. Wu Jiazhou et al. applied PDCA to blended teaching, realizing 
the precise implementation of teaching objectives through the closed-loop control of “Plan-Do-Check-Act” [9]; 
Cui Wensheng et al. introduced PDCA into the practical teaching reform of programming courses, improving 
the standardization of experimental teaching and data-driven continuous improvement [10]. These studies 
have verified the effectiveness of PDCA in teaching quality control, but research on constructing a dual-
helix-driven teaching method for programming courses by deeply integrating it with aerospace characteristic 
cases is still at a blank stage.

3. Design of the PDCA-aerospace case dual-helix-driven teaching model
This paper constructs a “PDCA-aerospace case dual-helix-driven” teaching model, designs a Beidou satellite 
navigation case system throughout the course to realize the organic integration of core Python knowledge 



166 Volume 3, Issue 12

points and aerospace application scenarios; builds a teaching control process based on the PDCA cycle 
to form a closed loop of “Plan-Do-Check-Act,” establishes a full-process practical platform based on the 
EduCoder platform, and conducts whole-process evaluation to ensure the continuous improvement and 
optimization of the teaching process.

3.1. Overall framework of the teaching model
Drawing on the synergistic mechanism of the DNA double-helix structure, the curriculum team constructs a 
dual-helix teaching system of “Beidou task main line + PDCA control line”, with “knowledge transfer and 
ability training” as the core. Through the mutual interweaving and dynamic coordination of the two spirals, 
the systematization and standardization of the teaching process are realized.

3.1.1. Core components of the dual helix
(1) Main Spiral (Beidou Task Line)

Taking the full-process work tasks of the Beidou Satellite Navigation System as the logical main 
line, it runs through all teaching content of the Python course. According to the engineering process 
of “satellite orbit calculation → ground station data reception → user positioning solution → 
trajectory visualization”, a four-level progressive task chain is constructed. Core Python knowledge 
points such as basic syntax, functions and modules, file operations, exception handling, object-
oriented programming, and data visualization are embedded into corresponding task links one by 
one, forming a progressive learning path of “scenario cognition → grammar learning → algorithm 
design → task implementation”.

(2) PDCA Spiral (Quality Control Line)
The four links of the PDCA cycle are embedded into each teaching module to implement quantitative 
control over the entire process of “teaching” and “learning”. Each module is promoted in accordance 
with the process of “clarifying goals → practical operation → evaluation and diagnosis → 
optimization and improvement”, ensuring the precise implementation of teaching objectives and 
timely solving problems in students’ learning and teachers’ teaching.

3.1.2. Synergy mechanism of the dual helix
The synergistic operation of the two spirals is realized through the three-dimensional coupling of “task 
decomposition - knowledge mapping - quality control”. Task decomposition: decompose the full-process 
Beidou navigation tasks into subtasks corresponding to teaching chapters to ensure the adaptation of tasks 
to teaching progress; Knowledge mapping: establish a “subtask - knowledge point” correspondence table to 
clarify the Python syntax, library functions and other contents required for each task, avoiding knowledge 
omissions; Quality control: through the PDCA cycle, conduct dual evaluation of the “learning process” and 
“task results” of each subtask, and adjust teaching strategies and task difficulty according to the evaluation 
results to realize the synchronization of “task advancement” and “quality control”.

The core innovation of this model lies in breaking the closed nature of traditional “knowledge 
transmission - mechanical practice”. On the one hand, aerospace cases endow abstract programming 
knowledge with engineering significance, stimulating students’ exploration desire through the rigor and 
innovation of the aerospace field; on the other hand, the PDCA cycle endows the teaching process with 



167 Volume 3, Issue 12

dynamic optimization capabilities, adjusting the teaching rhythm through continuous feedback to adapt to 
students’ cognitive laws.

3.2. Design of the cross-cutting Beidou satellite navigation case library
Based on teaching objectives, following the principles of “full coverage of knowledge points, gradient 
difficulty, and realistic scenarios”, a case library running through the entire course is designed. Each teaching 
chapter corresponds to a Beidou navigation-related case module, clarifying case objectives, required 
knowledge points, and PDCA control requirements to ensure the close combination of knowledge learning 
and aerospace applications. The specific design is shown in Table 1.

Table 1. Design table of Beidou navigation cases for each chapter

Teaching Chapters Beidou Case Modules Python Knowledge Points PDCA Control Objectives

Basic Syntax Satellite Orbit Parameter 
Parsing

Variables, data types, 
conditional statements

Code standardization rate ≥ 85%, TLE 
format parsing accuracy 100%

Functions and 
Modules

Orbit Calculation Function 
Encapsulation

Function definition, parameter 
passing, module import

Function reuse rate ≥ 90%, calculation 
error ≤ 100m

File Operations Batch Processing of Ephemeris 
Data

File reading and writing, CSV/
JSON format parsing

Data processing efficiency increased by 
30%, exception handling coverage 100%

Exception Handling Communication Link Fault 
Simulation

try-except statements, logging Program robustness score ≥ 90 points

Object-Oriented 
Programming

Beidou User Terminal 
Simulation

Classes and objects, inheritance 
and polymorphism

Class design rationality ≥ 85%, code 
scalability score ≥ 90

Data Visualization Satellite Trajectory and 
Positioning Result Display

Matplotlib/Pyecharts plotting Visualization effect score ≥ 85 points, 
chart interactivity up to standard

Comprehensive 
Module

Simple Simulation of Beidou 
Navigation System

Comprehensive application 
of knowledge points, system 
integration, document writing

System function realization rate ≥ 90%, 
code operation efficiency up to standard, 
complete and standardized project 
documents

The following principles are adhered to in case design: first, authenticity, such as ephemeris data 
referring to the public service performance specifications of Beidou, close to engineering practice; second, 
relevance, realizing vertical connection of knowledge; third, gradient, with difficulty gradually increasing 
from “basic operation” to “comprehensive application”. Cases in basic chapters focus on “knowledge 
point mastery,” while cases in comprehensive modules focus on “systematic thinking training,” adapting to 
students’ cognitive laws. At the same time, the PDCA cycle is used to continuously improve and optimize 
cases to ensure that cases are always consistent with teaching objectives.

3.3. Design of PDCA-based teaching implementation process
Taking each teaching module (corresponding to a single chapter case in Table 1) as a unit, a closed-loop 
implementation process of “Plan-Do-Check-Act” is designed, clarifying the operation points, participating 
subjects, and output results of each link to ensure that the teaching process is controllable, evaluable, and 
optimizable.



168 Volume 3, Issue 12

3.3.1. Plan phase: Clarify goals and decompose tasks
The Plan phase is the starting point of the PDCA cycle. Its core is to clarify module tasks and implementation 
requirements based on teaching objectives and students’ foundations. The specific process is as follows:

(1) Goal Setting: Combine curriculum standards and aerospace talent needs to formulate “knowledge 
goals”, “ability goals”, and “literacy goals” for the module. For example, the knowledge goal of the 
“batch processing of ephemeris data” module is “master CSV/JSON format parsing”, the ability 
goal is “possess multi-source data batch processing capabilities”, and the literacy goal is “cultivate 
rigorous engineering data processing thinking”;

(2) Task Decomposition: Decompose the module case into multiple operable subtasks, clarifying the 
requirements and time nodes of each subtask. Taking “batch processing of ephemeris data” as an 
example, it is decomposed into subtasks of “data reading → data cleaning → data calculation → 
result output → exception handling”, and class hours are specified for each subtask;

(3) Resource Preparation: Teachers prepare teaching resources such as case documents, reference code 
snippets, and aerospace background materials and upload them to the EduCoder platform; at the 
same time, identify knowledge weaknesses based on students’ learning data from previous modules 
to provide a basis for subsequent tutoring;

(4) Standard Formulation: Clarify the evaluation standards for subtasks, form a “Module Evaluation 
Standard Table,” and announce it to students in advance.

3.3.2. Do phase: Practical exploration and collaborative guidance
The Do phase focuses on students’ independent practice and teachers’ precise guidance. The specific process 
is as follows:

(1) Scenario Introduction: Introduce the case scenario through videos of Beidou navigation system 
applications such as satellite positioning demonstrations and aerospace task simulations, and explain 
module objectives combined with the significance of aerospace engineering to stimulate students’ 
interest.

(2) Knowledge Explanation: Teachers explain core knowledge points combined with case needs, 
focusing on explaining the application methods of knowledge points in aerospace scenarios. For 
example, when explaining loop statements, the application scenario of for loops is illustrated in 
combination with the need for “line-by-line parsing of ephemeris data”.

(3) Independent Practice: Students complete programming practice on the EduCoder platform. The 
platform provides an online programming environment and real-time syntax checking functions, 
allowing students to submit code at any time to obtain feedback; group collaboration is adopted for 
complex subtasks with clear division of labor;

(4) Guidance and Support: Teachers real-time monitor students’ progress through the platform, conduct 
centralized explanations for common problems, and one-on-one tutoring for individual problems; 
at the same time, encourage students to solve problems through group discussions and online forum 
exchanges.

3.3.3. Check phase: Multi-dimensional evaluation and problem diagnosis
The core of the Check phase is to comprehensively grasp teaching effects through multi-dimensional 



169 Volume 3, Issue 12

evaluation and identify problems in “teaching” and “learning”. The specific process is as follows:
(1) Result Evaluation: Based on the automatic evaluation function of the EduCoder platform, 

quantitatively score the “correctness”, “efficiency”, and “standardization” of students’ code; evaluate 
their understanding of knowledge points in combination with the experimental reports submitted by 
students (reports should include “problem analysis - implementation ideas - result summary”);

(2) Process Evaluation: Evaluate students’ learning attitudes and independent problem-solving abilities 
through process data recorded by the platform, such as the number of code submissions, debugging 
time, and number of help requests. For example, “excessive number of code submissions” may 
reflect insufficient logical understanding, and “long debugging time” may reflect weak algorithm 
design capabilities;

(3) Multi-Source Evaluation: Supplement teacher evaluation with “student self-evaluation + group peer 
evaluation”. Students’ self-evaluation needs to reflect on “learning gains - existing problems”, and 
group peer evaluation assesses members’ contribution to collaborative tasks;

(4) Problem Summary: Based on the evaluation results, form a “Module Problem List”, sort out 
common problems and individual problems by category, and clarify the causes of problems, such as 
“insufficient explanation of knowledge points” or “excessively high case difficulty”.

3.3.4. Act phase: Optimization and improvement, experience solidification
The Act phase is the key to the PDCA cycle. Its core is to formulate improvement measures for the problems 
found in the Check phase, providing an optimization direction for the teaching of subsequent modules. The 
specific process is as follows:

(1) Problem Rectification: For common problems, solve them through “supplementary teaching” (such 
as adding special lectures on “time system conversion”) or “task optimization” (such as adjusting 
case data difficulty); for individual problems, help students improve through “additional exercises” 
(such as providing basic supplementary practice cases) or “one-on-one tutoring”;

(2) Teaching Optimization: Adjust teaching strategies according to the causes of problems. For 
example, “insufficient explanation of knowledge points” can be improved by means of “animation 
demonstration + example decomposition”, and “excessively high case difficulty” can be solved by 
adding “step-by-step guidance prompts”;

(3) Experience Solidification: Sort out and file successful experiences in module teaching (such as 
“scenario introduction methods” and “collaborative grouping models”) and optimized resources to 
form a “Module Teaching Resource Package” for application in subsequent teaching;

(4) Continuous Cycle: Incorporate unresolved problems (such as “insufficient algorithm optimization 
capabilities of some students”) into the Plan phase of the next module to realize the continuous 
operation of the PDCA cycle.

3.4. Design of teaching support conditions
To ensure the smooth implementation of the dual-helix-driven teaching method, a trinity support system of 
“platform + resources + teachers” is constructed, clarifying the construction requirements and functional 
positioning of each support condition.

Firstly, select the EduCoder platform as the core online support tool, matching teaching needs based 



170 Volume 3, Issue 12

on its functional characteristics: an online programming environment supporting Python 3.x, with built-
in required libraries such as NumPy and Matplotlib, eliminating the need for students to install local 
environments; an automatic evaluation function allowing teachers to preset evaluation cases, with the 
platform providing real-time feedback on scores after students submit code; process data recording that 
automatically records students’ programming process data, providing a quantitative basis for process 
evaluation; a resource management function supporting the upload of courseware, videos, and case 
documents for students to access at any time; and experimental teaching assistant Q&A services.

Secondly, in terms of teaching resources, compile a characteristic lecture note “Python Programming 
(Aerospace Application Edition)”, integrating case operation steps, aerospace background knowledge, and 
knowledge point analysis; refer to the public service performance specifications of the Beidou Satellite 
Navigation System, sort out real ephemeris data and TLE orbital element data, and construct a “Beidou Case 
Database” to ensure data authenticity and availability.

Thirdly, build a double-qualified teaching team of “Python teaching + aerospace professionals”, inviting 
professional teachers with aerospace engineering practice experience to answer students’ professional 
questions about the Beidou navigation system; regularly carry out teaching seminars to jointly optimize case 
design and teaching processes, ensuring the in-depth integration of programming knowledge and aerospace 
scenarios.

4. Curriculum implementation plan and expected effects
The curriculum implementation is promoted in three phases to ensure the stable landing and continuous 
optimization of the teaching model. The first phase is the pilot verification phase: select 2 classes as pilots, 
initially deploy the case library based on the Educoder platform, and carry out teaching in accordance with 
the designed teaching model; focus on recording teaching data of each module during the teaching process, 
including students’ code submission status, evaluation results, and problem feedback, to form a teaching 
report for the first phase. The second phase is the promotion and application phase: promote the teaching 
model to the entire grade, optimize the case library and teaching process according to feedback from the pilot 
phase, and improve the quantitative standards of the multi-modal evaluation system. The third phase is the 
iterative optimization phase: continuously collect teaching data based on the PDCA cycle, regularly review 
the teaching model, update case content in combination with needs; establish a communication mechanism to 
promote teaching achievements.

5. Conclusion
Through the in-depth integration of Beidou cases and PDCA, a new paradigm of Python practical teaching 
featuring “demand-driven - process control - continuous improvement” is constructed, breaking the 
traditional teaching closed loop of “knowledge transmission - mechanical practice”; taking the Beidou 
Satellite Navigation System as a cross-cutting case, the organic combination of Python knowledge points 
and aerospace applications is realized; at the same time, the PDCA cycle endows the teaching process with 
dynamic optimization capabilities, effectively solving the three major teaching pain points of traditional 
courses. Through phased curriculum implementation and improved guarantee measures, it is expected to 
significantly improve students’ code quality, engineering practice capabilities, and systematic thinking, while 



171 Volume 3, Issue 12

forming high-quality teaching resources and replicable teaching experience.
In the future, further innovation and optimization of the teaching model will be carried out: first, explore 

the in-depth combination of PDCA and AI teaching assistants, using AI technology to achieve precise 
learning situation diagnosis, automatic generation of personalized learning paths, and intelligent real-time 
Q&A, improving the pertinence of teaching guidance; second, expand the coverage of the case library, 
enrich teaching content by combining new technologies and applications in the aerospace field, and add 
complex cases to meet the needs of advanced learning; third, strengthen interdisciplinary integration, deeply 
combining Python programming with aerospace engineering, artificial intelligence, data science and other 
disciplines to cultivate compound innovative talents, providing stronger talent support for the development of 
China’s aerospace industry.

Disclosure statement
The author declares no conflict of interest.

References
[1]	 Song T, Huang T, Li X, 2019, Python Language: An Ideal Choice for the Teaching Reform of Programming 

Courses. Computer Education, (2): 1–5.
[2]	 Ministry of Education of the People’s Republic of China, 2021, Basic Requirements for College Computer 

Foundation Courses Teaching. Ministry of Education of the People’s Republic of China, Beijing.
[3]	 Ren L, Han X, Luo C, 2025, Reform and Exploration of “Programming” Courses Oriented to Cultivating College 

Students’ Computational Thinking. Industry and Information Technology Education, (10): 50–53.
[4]	 Mandal S, Das S, 2018, Application of PDCA Cycle for the Quality Enhancement of Engineering Education. 

International Journal of Quality & Reliability Management, 35(9): 1866–1884.
[5]	 Massachusetts Institute of Technology, 2016, MIT OpenCourseWare: Introduction to Computer Science and 

Programming in Python. MIT OpenCourseWare, visited on November 7, 2025, https://ocw.mit.edu/courses/6-
0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

[6]	 Stanford University, 2020, Code in Place. Stanford University, visited on November 10, 2025, https://codeinplace.
stanford.edu/

[7]	 Chen Y, Li J, Liu J, 2022, Online Training Teaching Reform of Python Language Courses Based on EduCoder 
Platform. Computer Education, (10): 178–182.

[8]	 Zhao L, Wang D, 2022, Research on the Construction of Python Programming Case Library for Aerospace Majors. 
Experimental Technology and Management, 39(4): 179–182.

[9]	 Wu J, Zhang S, Liu J, 2023, Teaching Reform of C Language Course Based on OBE + PDCA. Computer 
Education, (2): 192–197.

[10]	 Cui W, Li X, 2025, Research and Practice on the Assessment Scheme of Practical Teaching in Programming 
Courses—Exploration of Curriculum Reform in Applied Universities Guided by OBE Concept. Journal of 
Innovative Education Research, 13(10): 116–124.

Publisher’s note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 


