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Abstract: Objective: To develop a three-dimensional convolutional neural network (3D-CNN) model based on
coronary computed tomography angiography (CCTA) for predicting rapid plaque progression (RPP), and to compare
its performance against traditional machine learning models and existing advanced methodologies. Methods: This
retrospective study analyzed 150 patients who underwent serial CCTA examinations. Following strict alignment of CTA
volume data with plaque masks, traditional machine learning models (LASSO, Elastic Net, Random Forest, XGBoost) and
a lightweight 3D-CNN model were constructed. RPP was defined as an annualized plaque burden (PB) increase > 1.0%.
Model performance was primarily evaluated using the area under the receiver operating characteristic curve (AUC), with
SHAP (SHapley Additive exPlanations) employed for model interpretation. Results: Traditional models demonstrated
limited discriminatory ability, with AUCs ranging from 0.32 to 0.51. The developed 3D-CNN model achieved an AUC
of 0.75 on the independent test set, with a sensitivity of 0.64 and a specificity of 0.88. SHAP analysis revealed that the
3D-CNN focused on internal plaque texture and Hounsfield Unit (HU) distribution patterns, whereas traditional models
relied on limited features such as plaque volume. Conclusion: The 3D-CNN model can directly learn deep features
associated with RPP from CCTA images. Its performance is significantly superior to traditional models and demonstrates
potential comparable to current advanced radiomics and machine learning methods, offering a novel tool for non-invasive
identification of high-risk plaques using a single time-point baseline scan.
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1. Introduction

Rapid plaque progression (RPP) is a significant predictor of acute coronary events *'. Serial invasive angiographic
studies have confirmed that non-obstructive lesions can progress rapidly, constituting a key mechanism for
subsequent acute events *. Compared to slowly progressing plaques, RPP is significantly associated with an
increased risk of future major adverse cardiovascular events ®. Therefore, early identification of plaques at risk
for rapid progression is crucial for preventing acute coronary syndromes. Coronary CT angiography (CCTA) is a
preferred non-invasive imaging modality for evaluating coronary artery disease . Recently, quantitative plaque
analysis based on CCTA has emerged as a new direction for risk assessment '*. However, traditional methods
often rely on manually extracted morphological features (e.g., plaque burden, component volumes), which may
inadequately capture the internal heterogeneity, microenvironment, and complex spatiotemporal dynamics of
plaques ',

Radiomics enables precise disease phenotyping beyond visual assessment by extracting high-dimensional
quantitative features from medical images ", Recent studies suggest that CCTA-based radiomics aids in
identifying high-risk plaques and predicting their progression !">"*). Furthermore, machine learning (ML)
frameworks can integrate clinical, laboratory, qualitative, and quantitative CCTA features to effectively identify
individuals at risk of RPP ""*"*!. Despite advances in radiomics and ML, these methods predominantly rely on
pre-defined, handcrafted features, potentially failing to capture all spatial contextual information inherent in the
raw 3D image data. Three-dimensional convolutional neural networks (3D-CNNs) can learn hierarchical feature
representations end-to-end from raw image data, offering a new avenue for more fully leveraging information
within CCTA images ""*'”. Based on this rationale, this study aimed to develop a lightweight 3D-CNN model for
predicting RPP and to systematically compare and validate its performance against traditional ML models and

advanced radiomics methods reported in the literature.

2. Materials and methods

2.1. Study population
This retrospective study was approved by the Institutional Review Board, with a waiver for informed consent. We
consecutively screened patients who underwent at least twvo CCTA examinations at Gongli Hospital of Shanghai
Pudong New Area between January 2017 and November 2024.

The inclusion criteria were as follows:

(1) Aninterval of > 1 year between the two CCTA scans;

(2) Presence of at least one atherosclerotic plaque (diameter > 2 mm) on the baseline CCTA.

The exclusion criteria were as follows:

(1) Poor image quality precluding plaque analysis;

(2) Coronary revascularization performed between the two CCTA examinations;

(3) Missing clinical data.

A total of 150 patients were finally enrolled and randomly split into a training set (105 patients, 70%)
and a test set (45 patients, 30%). Based on an annualized PB increase > 1.0%, patients were categorized into a
progression group (n = 64) and a non-progression group (n = 86). Baseline characteristics are shown in Table 1.
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Table 1. Baseline patient characteristics

Variable Overall (n =150) Progression group (n = 64) Non-progression group (n =86) P-value
Demographics

Age, years 61.2+8.9 63.5+8.7 59.4 + 8.8 0.721
Male, n (%) 85 (56.7) 40 (62.5) 45 (52.3) 0.205
Body mass index, kg/m’ 254+33 259+35 25.0+3.1 0.087

Cardiovascular risk factors, n (%)

Hypertension 82 (54.7) 42 (65.6) 40 (46.5) 0.019
Diabetes mellitus 33 (22.0) 20 (31.3) 13 (15.1) 0.016
Dyslipidemia 56 (37.3) 26 (40.6) 30 (34.9) 0.471
Smoking history 45 (30.0) 25 (39.1) 20 (23.3) 0.132
Laboratory findings

Total Cholesterol, mmol/L 470+ 1.18 4.65+1.22 474+ 1.15 0.642
LDL-C, mmol/L 2.88+0.87 2.92+091 2.835+0.84 0.618
HDL-C, mmol/L 1.23+0.30 1.18+0.28 1.27 +0.31 0.046
Triglycerides, mmol/L 1.66 +0.98 1.72£1.05 1.61 £0.92 0.482

Morphological analysis

Plaque length, mm 15.8+8.3 18.9+8.7 13.4+7.2 <0.001
Total plaque volume, mm’ 185.6 £128.4 258.3+142.7 130.5 + 88.6 <0.001
Stenosis degree, % 38.7+18.2 46.3+18.9 329+154 <0.001
Minimal lumen area, mm’ 40+2.2 32+1.9 46+2.3 <0.001

Plaque composition analysis

Calcified volume, mm’ 38.9+472 52.4+53.8 28.7+38.5 0.002
Calcified volume ratio, % 20.9+£15.8 20.3£15.2 21.4+16.3 0.659
Non-calcified volume, mm? 146.7 +102.3 2059+118.6 101.8+72.4 <0.001
Non-calcified volume ratio, % 79.1£15.8 79.7+£15.2 78.6£16.3 0.659
Low-attenuation plaque volume, mm’ 9.8 + 13.6 153+ 16.8 5.6+89 <0.001
Low-attenuation plaque ratio, % 53+6.8 59+7.1 48=+6.5 0.325
Mean CT value of LAP, HU 27.8+179 24.6 +15.8 30.2+19.1 0.038
Fat attenuation index (FAI), HU -69.8+7.6 -67.2+7.1 -71.8+7.4 <0.001
Plaque burden, % 523+11.8 58.7+10.9 47.4+10.2 0.005
Annualized APB, %/year 0.8+23 2.1+15 -0.3+0.8 <0.001

High-risk plaque features, n (%)

Positive remodeling 92 (61.3) 48 (75.0) 44 (51.2) 0.003
Low-density plaque 28 (18.7) 18 (28.1) 10 (11.6) 0.009
Spotty calcification 25 (16.7) 14 (21.9) 11 (12.8) 0.128
Napkin-ring sign 3(2.0) 2(3.1) 1(1.2) 0.381

LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; LAP: Low-attenuation plaque;
HU: Hounsfield units; PB: Plaque burden; APB: Change in plaque burden.
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2.2. CCTA image acquisition and preprocessing

All CCTA examinations were performed using a Siemens dual-source CT scanner (Somatom Definition Flash,
Siemens Healthineers, Forchheim, Germany). Image acquisition and reconstruction parameters were as follows:
tube voltage 120 kVp, tube current modulated automatically based on patient body mass index (range 350—600
mA), and collimation width 64 x 0.6 mm. All original DICOM data underwent strict quality control. Prior to
scanning, all patients received sublingual nitroglycerin (0.5 mg). Beta-blockers were administered for heart rate
control if the pre-scan heart rate was > 65 beats per minute. Plaque quantification was performed using the United
Imaging Intelligence CTA Coronary Al Analysis System (www.uii-ai.com). Plaque segmentation and annotation
were conducted using ITK-SNAP (version 4.0).

Custom Python scripts (analyze alignment.py) were used to perform slice-by-slice verification of spatial
coordinates, slice thickness, and pixel spacing between the CTA volume data and corresponding plaque masks for
each case. Alignment reports were generated to exclude mismatched samples.

Following previous studies, plaque volume subtypes were measured based on Hounsfield Unit (HU)
thresholds: low-attenuation plaque (< 30 HU), non-calcified plaque (30-130 HU), and calcified plaque (> 130
HU). RPP was defined as an annualized plaque burden (PB) increase > 1.0% ™'*. PB was calculated as (Plaque
Volume / Vessel Volume) x 100%. The annualized PB progression (APB/year) was calculated as (Follow-up PB -

Baseline PB) / Scan interval time (years).

2.3. Feature extraction and model construction

2.3.1. Traditional machine learning models

The model was implemented using the make features and models.pyscript. A set of features was extracted from
each plaque region of interest (ROI), including geometric features (volume, aspect ratio), HU statistical features
(mean, standard deviation, etc.), and calcification ratio, among other radiomics features. These were merged with
plaque attributes (type, stenosis degree) from clinical follow-up sheets and patient risk factors to form a structured
feature table. LASSO, Elastic Net, Random Forest, and XGBoost models were constructed. Hyperparameter
optimization was performed using case-stratified 5-fold cross-validation. Model performance was evaluated on the
fixed independent test set.

2.3.2. 3D-CNN model
The model was implemented using the train_cnn_min.pyscript.

The input data are as follows:

(1) Image input: A 96x96x96 voxel 3D image patch was cropped from the aligned CTA volume data,

centered on the plaque centroid. HU values were windowed (-100 to 500 HU) and normalized;

(2) Tabular features: 26-dimensional clinical and plaque tabular features were concatenated.

A lightweight 3D-CNN served as the backbone, incorporating Squeeze-and-Excitation (SE) attention modules
to enhance feature representation. The final fully connected layers fused the imaging and tabular features to output
a risk probability.

Data augmentation and regularization techniques included label smoothing (smoothing = 0.1), MixUp (a =
0.4), and CutMix (a = 0.1). The model was trained using the AdamW optimizer with cosine annealing learning
rate decay, and early stopping was implemented to prevent overfitting.

45 Volume 3; Issue 4



2.4. Statistical analysis and model interpretation

Statistical analyses were performed using SPSS (version 26.0, IBM, Armonk, NY, USA) and R software (version
4.1.2, R Foundation, Vienna, Austria). Continuous variables were compared using the independent samples t-test
or Mann-Whitney U test, as appropriate. Categorical variables are presented as frequencies and percentages, and
compared using the chi-square test. The AUC, sensitivity, specificity, accuracy, and F1-score were calculated for
all models. The DeLong test was used to compare differences in ROC curves. SHAP analysis was applied to the
3D-CNN model to quantify the contribution of each feature to the model predictions and identify key predictors.

3. Results
3.1. Model performance comparison

As shown in Table 2, the four traditional machine learning models demonstrated poor discriminatory ability on the
test set (AUC range: 0.32—0.51). In contrast, the proposed 3D-CNN model achieved the best performance, with an
AUC of 0.75 (95% CI: 0.69-0.81), a sensitivity of 0.64, and a specificity of 0.88.

Table 2. Performance comparison of different models on the test set

Model AUC (95% CI) Sensitivity Specificity F1-Score
LASSO 0.32 (0.25-0.39) 0.21 0.80 0.18
Elastic Net 0.35(0.28-0.42) 0.24 0.82 0.21
Random Forest 0.48 (0.41-0.55) 0.38 0.79 0.35
XGBoost 0.51 (0.44-0.58) 0.42 0.81 0.39
3D-CNN 0.75 (0.69-0.81) 0.64 0.88 0.68

3.2. ROC curve analysis
The ROC curves for the traditional ML models were close to the diagonal, indicating limited discriminatory ability
(Figure 1). In contrast, the ROC curve for the 3D-CNN model demonstrated superior classification performance,
with an AUC of 0.75 (95% CI: 0.69-0.81) on the test set, which was significantly higher than all traditional models
(DeLong test, P < 0.01). This result visually underscores the advantage of the 3D-CNN in identifying rapid plaque
progression (Figure 2).
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Figure 1. ROC curves for all models (test set).
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Figure 2. Model AUC comparison(test set).

3.3. Model interpretability analysis

To understand the models’ decision-making basis, SHAP analysis was applied. For the best-performing traditional
model (XGBoost), SHAP analysis indicated that its decisions primarily relied on traditional radiomics features
such as plaque volume and the standard deviation of HU values (Figure 3). For the 3D-CNN model, SHAP
analysis revealed that its decisions depended on a different set of feature patterns, corresponding to activations in
the network’s intermediate layers, which reflect local textural heterogeneity and complex HU distributions within
the plaque (Figure 4 and Figure 5).
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Figure 3. SHAP summary plot for the XGBoost model.
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Figure 4. SHAP summary plot for the 3D-CNN model.
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4. Discussion

4.1. Cross-method performance comparison and paradigm shift

The poor performance of traditional ML models (AUC: 0.32-0.51) aligns with findings by Feng ef al., who also
reported limited performance using traditional plaque parameters, underscoring the constraints of relying solely
on morphological features for predicting plaque progression "”. In contrast, our 3D-CNN model demonstrated
significantly superior performance (AUC = 0.75). This AUC is comparable to models built on radiomics signatures
by Chen et al. (AUC 0.81-0.82) and deep learning frameworks reported by Lin ef al., indicating the potential of
3D-CNNs to compete with current state-of-the-art prediction tools '*'*. SHAP analysis further elucidated the
reason for this performance gap: traditional models relied on limited features like plaque volume, consistent with
studies emphasizing the importance of plaque burden, whereas the 3D-CNN automatically focused on internal
plaque texture and HU distribution patterns . This finding resonates with radiomics studies by Chen e al.
and Feng et al., which identified features related to textural heterogeneity (e.g., wavelet-based gray-level non-
uniformity) as highly predictive "*"\. This signifies an important paradigm shift, where plaque risk assessment is
evolving from a morphology-based “how big is it” approach towards a qualitative and heterogeneity-based “what
does it look like inside” analysis.

4.2. Biological interpretation of features and methodological complementarity

The “texture” features emphasized by our 3D-CNN may be biologically congruent with the heterogeneity features
extracted via pre-defined filters in radiomics studies. Both point towards the spatial complexity and compositional
instability of plaque as the intrinsic driver of rapid progression. This aligns with the pathological mechanisms
revealed by natural history studies using intravascular ultrasound (IVUS), where intra-plaque heterogeneity and
microenvironmental changes are key markers of active progression >'*). Methodologically, this study highlights
the contrast and complementarity between deep learning and radiomics. Radiomics offers good interpretability
through pre-defined features, while 3D-CNNs can automatically learn more complex spatial patterns. Both
approaches converge on the core concept of “image heterogeneity,” providing a rationale for future hybrid models
that leverage the strengths of both.

4.3. Clinical translation and precision prevention

Current ESC guidelines emphasize risk stratification and precise preventive strategies for patients with chronic
coronary syndromes *'!. Clinical decision-making often relies on periodic CCTA re-evaluation to detect plaque
progression, potentially leading to delayed intervention. The primary clinical value of our 3D-CNN model lies
in its potential to identify plaques with a high-risk “trajectory” for rapid progression using only a single baseline
CCTA scan, even if they appear stable at the time of imaging. This could serve as a decision-support tool, enabling
intensification of lipid-lowering therapy or other targeted interventions for high-risk patients (e.g., those with
hypertension, diabetes, or lower HDL-C levels, as suggested by our data) at an earlier stage. This facilitates a
shift from reactive treatment to proactive prevention, aligning perfectly with evidence-based precision medicine

principles %\

4.4. Limitations and future directions

This study has several following limitations:
(1) As a single-center retrospective study, selection bias is inevitable, and the sample size, while reasonable,
could be larger for a deep learning model;
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(2) Although widely used, the definition of RPP based on annualized PB change requires validation against
hard clinical endpoints (e.g., myocardial infarction) in long-term follow-up studies.

Future research should focus on as follows:

(1) External validation: Prospective, multi-center, large-scale validation to assess the model’s generalizability
and robustness;

(2) Association with clinical endpoints: Long-term follow-up to directly link model predictions to hard
endpoints like acute coronary events, establishing its definitive prognostic value;

(3) Technical integration: Exploring hybrid prediction models that more deeply integrate deep learning,
radiomics, and clinical risk factors;

(4) Workflow integration: Developing automated, integrated analysis pipelines incorporating image

segmentation and prediction into clinical workstations to enhance practicality.

5. Conclusion

This study successfully developed a model for predicting coronary plaque progression based on a single baseline

CCTA scan. The results demonstrate that a 3D convolutional neural network, incorporating concepts from

radiomics, significantly outperforms traditional machine learning models. Its performance is comparable to current

advanced radiomics and deep learning methods reported internationally. This confirms the substantial application

potential and clinical translation value of advanced image analysis techniques for the precise risk assessment of

coronary plaques.
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