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Abstract: Objective: To develop a three-dimensional convolutional neural network (3D-CNN) model based on 
coronary computed tomography angiography (CCTA) for predicting rapid plaque progression (RPP), and to compare 
its performance against traditional machine learning models and existing advanced methodologies. Methods: This 
retrospective study analyzed 150 patients who underwent serial CCTA examinations. Following strict alignment of CTA 
volume data with plaque masks, traditional machine learning models (LASSO, Elastic Net, Random Forest, XGBoost) and 
a lightweight 3D-CNN model were constructed. RPP was defined as an annualized plaque burden (PB) increase ≥ 1.0%. 
Model performance was primarily evaluated using the area under the receiver operating characteristic curve (AUC), with 
SHAP (SHapley Additive exPlanations) employed for model interpretation. Results: Traditional models demonstrated 
limited discriminatory ability, with AUCs ranging from 0.32 to 0.51. The developed 3D-CNN model achieved an AUC 
of 0.75 on the independent test set, with a sensitivity of 0.64 and a specificity of 0.88. SHAP analysis revealed that the 
3D-CNN focused on internal plaque texture and Hounsfield Unit (HU) distribution patterns, whereas traditional models 
relied on limited features such as plaque volume. Conclusion: The 3D-CNN model can directly learn deep features 
associated with RPP from CCTA images. Its performance is significantly superior to traditional models and demonstrates 
potential comparable to current advanced radiomics and machine learning methods, offering a novel tool for non-invasive 
identification of high-risk plaques using a single time-point baseline scan.
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1. Introduction
Rapid plaque progression (RPP) is a significant predictor of acute coronary events [1,2]. Serial invasive angiographic 
studies have confirmed that non-obstructive lesions can progress rapidly, constituting a key mechanism for 
subsequent acute events [3,4]. Compared to slowly progressing plaques, RPP is significantly associated with an 
increased risk of future major adverse cardiovascular events [5,6]. Therefore, early identification of plaques at risk 
for rapid progression is crucial for preventing acute coronary syndromes. Coronary CT angiography (CCTA) is a 
preferred non-invasive imaging modality for evaluating coronary artery disease [7]. Recently, quantitative plaque 
analysis based on CCTA has emerged as a new direction for risk assessment [8]. However, traditional methods 
often rely on manually extracted morphological features (e.g., plaque burden, component volumes), which may 
inadequately capture the internal heterogeneity, microenvironment, and complex spatiotemporal dynamics of 
plaques [9,10].

Radiomics enables precise disease phenotyping beyond visual assessment by extracting high-dimensional 
quantitative features from medical images [11]. Recent studies suggest that CCTA-based radiomics aids in 
identifying high-risk plaques and predicting their progression [12,13]. Furthermore, machine learning (ML) 
frameworks can integrate clinical, laboratory, qualitative, and quantitative CCTA features to effectively identify 
individuals at risk of RPP [14,15]. Despite advances in radiomics and ML, these methods predominantly rely on 
pre-defined, handcrafted features, potentially failing to capture all spatial contextual information inherent in the 
raw 3D image data. Three-dimensional convolutional neural networks (3D-CNNs) can learn hierarchical feature 
representations end-to-end from raw image data, offering a new avenue for more fully leveraging information 
within CCTA images [16,17]. Based on this rationale, this study aimed to develop a lightweight 3D-CNN model for 
predicting RPP and to systematically compare and validate its performance against traditional ML models and 
advanced radiomics methods reported in the literature.

2. Materials and methods
2.1. Study population
This retrospective study was approved by the Institutional Review Board, with a waiver for informed consent. We 
consecutively screened patients who underwent at least two CCTA examinations at Gongli Hospital of Shanghai 
Pudong New Area between January 2017 and November 2024. 

The inclusion criteria were as follows: 
(1)	 An interval of ≥ 1 year between the two CCTA scans; 
(2)	 Presence of at least one atherosclerotic plaque (diameter > 2 mm) on the baseline CCTA. 
The exclusion criteria were as follows: 
(1)	 Poor image quality precluding plaque analysis;
(2)	 Coronary revascularization performed between the two CCTA examinations; 
(3)	 Missing clinical data. 
A total of 150 patients were finally enrolled and randomly split into a training set (105 patients, 70%) 

and a test set (45 patients, 30%). Based on an annualized PB increase ≥ 1.0%, patients were categorized into a 
progression group (n = 64) and a non-progression group (n = 86). Baseline characteristics are shown in Table 1.
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Table 1. Baseline patient characteristics

Variable Overall (n = 150) Progression group (n = 64) Non-progression group (n = 86) P-value

Demographics​

Age, years 61.2 ± 8.9 63.5 ± 8.7 59.4 ± 8.8 0.721

Male, n (%) 85 (56.7) 40 (62.5) 45 (52.3) 0.205

Body mass index, kg/m2 25.4 ± 3.3 25.9 ± 3.5 25.0 ± 3.1 0.087

Cardiovascular risk factors, n (%)​

Hypertension 82 (54.7) 42 (65.6) 40 (46.5) 0.019​

Diabetes mellitus 33 (22.0) 20 (31.3) 13 (15.1) 0.016​

Dyslipidemia 56 (37.3) 26 (40.6) 30 (34.9) 0.471

Smoking history 45 (30.0) 25 (39.1) 20 (23.3) 0.132

Laboratory findings​

Total Cholesterol, mmol/L 4.70 ± 1.18 4.65 ± 1.22 4.74 ± 1.15 0.642

LDL-C, mmol/L 2.88 ± 0.87 2.92 ± 0.91 2.85 ± 0.84 0.618

HDL-C, mmol/L 1.23 ± 0.30 1.18 ± 0.28 1.27 ± 0.31 0.046​

Triglycerides, mmol/L 1.66 ± 0.98 1.72 ± 1.05 1.61 ± 0.92 0.482

Morphological analysis​

Plaque length, mm 15.8 ± 8.3 18.9 ± 8.7 13.4 ± 7.2 < 0.001​

Total plaque volume, mm3 185.6 ± 128.4 258.3 ± 142.7 130.5 ± 88.6 < 0.001​

Stenosis degree, % 38.7 ± 18.2 46.3 ± 18.9 32.9 ± 15.4 < 0.001​

Minimal lumen area, mm2 4.0 ± 2.2 3.2 ± 1.9 4.6 ± 2.3 < 0.001​

Plaque composition analysis​

Calcified volume, mm3 38.9 ± 47.2 52.4 ± 53.8 28.7 ± 38.5 0.002​

Calcified volume ratio, % 20.9 ± 15.8 20.3 ± 15.2 21.4 ± 16.3 0.659

Non-calcified volume, mm³ 146.7 ± 102.3 205.9 ± 118.6 101.8 ± 72.4 < 0.001​

Non-calcified volume ratio, % 79.1 ± 15.8 79.7 ± 15.2 78.6 ± 16.3 0.659

Low-attenuation plaque volume, mm3 9.8 ± 13.6 15.3 ± 16.8 5.6 ± 8.9 < 0.001​

Low-attenuation plaque ratio, % 5.3 ± 6.8 5.9 ± 7.1 4.8 ± 6.5 0.325

Mean CT value of LAP, HU 27.8 ± 17.9 24.6 ± 15.8 30.2 ± 19.1 0.038​

Fat attenuation index (FAI), HU -69.8 ± 7.6 -67.2 ± 7.1 -71.8 ± 7.4 < 0.001​

Plaque burden, % 52.3 ± 11.8 58.7 ± 10.9 47.4 ± 10.2 0.005​

Annualized ΔPB, %/year 0.8 ± 2.3 2.1 ± 1.5 -0.3 ± 0.8 < 0.001​

High-risk plaque features, n (%)​

Positive remodeling 92 (61.3) 48 (75.0) 44 (51.2) 0.003​

Low-density plaque 28 (18.7) 18 (28.1) 10 (11.6) 0.009​

Spotty calcification 25 (16.7) 14 (21.9) 11 (12.8) 0.128

Napkin-ring sign 3 (2.0) 2 (3.1) 1 (1.2) 0.381

LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein cholesterol; LAP: Low-attenuation plaque; 
HU: Hounsfield units; PB: Plaque burden; ΔPB: Change in plaque burden.
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2.2. CCTA image acquisition and preprocessing
All CCTA examinations were performed using a Siemens dual-source CT scanner (Somatom Definition Flash, 
Siemens Healthineers, Forchheim, Germany). Image acquisition and reconstruction parameters were as follows: 
tube voltage 120 kVp, tube current modulated automatically based on patient body mass index (range 350–600 
mA), and collimation width 64 × 0.6 mm. All original DICOM data underwent strict quality control. Prior to 
scanning, all patients received sublingual nitroglycerin (0.5 mg). Beta-blockers were administered for heart rate 
control if the pre-scan heart rate was > 65 beats per minute. Plaque quantification was performed using the United 
Imaging Intelligence CTA Coronary AI Analysis System (www.uii-ai.com). Plaque segmentation and annotation 
were conducted using ITK-SNAP (version 4.0).

Custom Python scripts (analyze_alignment.py) were used to perform slice-by-slice verification of spatial 
coordinates, slice thickness, and pixel spacing between the CTA volume data and corresponding plaque masks for 
each case. Alignment reports were generated to exclude mismatched samples.

Following previous studies, plaque volume subtypes were measured based on Hounsfield Unit (HU) 
thresholds: low-attenuation plaque (< 30 HU), non-calcified plaque (30–130 HU), and calcified plaque (> 130 
HU). RPP was defined as an annualized plaque burden (PB) increase ≥ 1.0% [8,18]. PB was calculated as (Plaque 
Volume / Vessel Volume) × 100%. The annualized PB progression (ΔPB/year) was calculated as (Follow-up PB - 
Baseline PB) / Scan interval time (years).

2.3. Feature extraction and model construction
2.3.1. Traditional machine learning models
The model was implemented using the make_features_and_models.pyscript. A set of features was extracted from 
each plaque region of interest (ROI), including geometric features (volume, aspect ratio), HU statistical features 
(mean, standard deviation, etc.), and calcification ratio, among other radiomics features. These were merged with 
plaque attributes (type, stenosis degree) from clinical follow-up sheets and patient risk factors to form a structured 
feature table. LASSO, Elastic Net, Random Forest, and XGBoost models were constructed. Hyperparameter 
optimization was performed using case-stratified 5-fold cross-validation. Model performance was evaluated on the 
fixed independent test set.

2.3.2. 3D-CNN model
The model was implemented using the train_cnn_min.pyscript.

The input data are as follows:
(1)	 Image input: A 96×96×96 voxel 3D image patch was cropped from the aligned CTA volume data, 

centered on the plaque centroid. HU values were windowed (-100 to 500 HU) and normalized; 
(2)	 Tabular features: 26-dimensional clinical and plaque tabular features were concatenated.
A lightweight 3D-CNN served as the backbone, incorporating Squeeze-and-Excitation (SE) attention modules 

to enhance feature representation. The final fully connected layers fused the imaging and tabular features to output 
a risk probability.

Data augmentation and regularization techniques included label smoothing (smoothing = 0.1), MixUp (α = 
0.4), and CutMix (α = 0.1). The model was trained using the AdamW optimizer with cosine annealing learning 
rate decay, and early stopping was implemented to prevent overfitting.
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2.4. Statistical analysis and model interpretation
Statistical analyses were performed using SPSS (version 26.0, IBM, Armonk, NY, USA) and R software (version 
4.1.2, R Foundation, Vienna, Austria). Continuous variables were compared using the independent samples t-test 
or Mann-Whitney U test, as appropriate. Categorical variables are presented as frequencies and percentages, and 
compared using the chi-square test. The AUC, sensitivity, specificity, accuracy, and F1-score were calculated for 
all models. The DeLong test was used to compare differences in ROC curves. SHAP analysis was applied to the 
3D-CNN model to quantify the contribution of each feature to the model predictions and identify key predictors.

3. Results
3.1. Model performance comparison
As shown in Table 2, the four traditional machine learning models demonstrated poor discriminatory ability on the 
test set (AUC range: 0.32–0.51). In contrast, the proposed 3D-CNN model achieved the best performance, with an 
AUC of 0.75 (95% CI: 0.69–0.81), a sensitivity of 0.64, and a specificity of 0.88.

Table 2. Performance comparison of different models on the test set

Model AUC (95% CI) Sensitivity Specificity F1-Score

LASSO 0.32 (0.25–0.39) 0.21 0.80 0.18

Elastic Net 0.35 (0.28–0.42) 0.24 0.82 0.21

Random Forest 0.48 (0.41–0.55) 0.38 0.79 0.35

XGBoost 0.51 (0.44–0.58) 0.42 0.81 0.39

3D-CNN​ 0.75 (0.69–0.81)​ 0.64​ 0.88​ 0.68

3.2. ROC curve analysis
The ROC curves for the traditional ML models were close to the diagonal, indicating limited discriminatory ability 
(Figure 1). In contrast, the ROC curve for the 3D-CNN model demonstrated superior classification performance, 
with an AUC of 0.75 (95% CI: 0.69–0.81) on the test set, which was significantly higher than all traditional models 
(DeLong test, P < 0.01). This result visually underscores the advantage of the 3D-CNN in identifying rapid plaque 
progression (Figure 2).

Figure 1. ROC curves for all models (test set).
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Figure 2. Model AUC comparison(test set).

3.3. Model interpretability analysis
To understand the models’ decision-making basis, SHAP analysis was applied. For the best-performing traditional 
model (XGBoost), SHAP analysis indicated that its decisions primarily relied on traditional radiomics features 
such as plaque volume and the standard deviation of HU values (Figure 3). For the 3D-CNN model, SHAP 
analysis revealed that its decisions depended on a different set of feature patterns, corresponding to activations in 
the network’s intermediate layers, which reflect local textural heterogeneity and complex HU distributions within 
the plaque (Figure 4 and Figure 5).

Figure 3. SHAP summary plot for the XGBoost model.
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Figure 4. SHAP summary plot for the 3D-CNN model.

Figure 5. Representative intermediate-layer activations of the 3D-CNN model. 
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4. Discussion
4.1. Cross-method performance comparison and paradigm shift
The poor performance of traditional ML models (AUC: 0.32–0.51) aligns with findings by Feng et al., who also 
reported limited performance using traditional plaque parameters, underscoring the constraints of relying solely 
on morphological features for predicting plaque progression [19]. In contrast, our 3D-CNN model demonstrated 
significantly superior performance (AUC = 0.75). This AUC is comparable to models built on radiomics signatures 
by Chen et al. (AUC 0.81–0.82) and deep learning frameworks reported by Lin et al., indicating the potential of 
3D-CNNs to compete with current state-of-the-art prediction tools [12,16]. SHAP analysis further elucidated the 
reason for this performance gap: traditional models relied on limited features like plaque volume, consistent with 
studies emphasizing the importance of plaque burden, whereas the 3D-CNN automatically focused on internal 
plaque texture and HU distribution patterns [20]. This finding resonates with radiomics studies by Chen et al. 

and Feng et al., which identified features related to textural heterogeneity (e.g., wavelet-based gray-level non-
uniformity) as highly predictive [13,19]. This signifies an important paradigm shift, where plaque risk assessment is 
evolving from a morphology-based “how big is it” approach towards a qualitative and heterogeneity-based “what 
does it look like inside” analysis.

4.2. Biological interpretation of features and methodological complementarity
The “texture” features emphasized by our 3D-CNN may be biologically congruent with the heterogeneity features 
extracted via pre-defined filters in radiomics studies. Both point towards the spatial complexity and compositional 
instability of plaque as the intrinsic driver of rapid progression. This aligns with the pathological mechanisms 
revealed by natural history studies using intravascular ultrasound (IVUS), where intra-plaque heterogeneity and 
microenvironmental changes are key markers of active progression [2,18]. Methodologically, this study highlights 
the contrast and complementarity between deep learning and radiomics. Radiomics offers good interpretability 
through pre-defined features, while 3D-CNNs can automatically learn more complex spatial patterns. Both 
approaches converge on the core concept of “image heterogeneity,” providing a rationale for future hybrid models 
that leverage the strengths of both.

4.3. Clinical translation and precision prevention
Current ESC guidelines emphasize risk stratification and precise preventive strategies for patients with chronic 
coronary syndromes [7,21]. Clinical decision-making often relies on periodic CCTA re-evaluation to detect plaque 
progression, potentially leading to delayed intervention. The primary clinical value of our 3D-CNN model lies 
in its potential to identify plaques with a high-risk “trajectory” for rapid progression using only a single baseline 
CCTA scan, even if they appear stable at the time of imaging. This could serve as a decision-support tool, enabling 
intensification of lipid-lowering therapy or other targeted interventions for high-risk patients (e.g., those with 
hypertension, diabetes, or lower HDL-C levels, as suggested by our data) at an earlier stage. This facilitates a 
shift from reactive treatment to proactive prevention, aligning perfectly with evidence-based precision medicine 
principles [22].

4.4. Limitations and future directions
This study has several following limitations: 

(1)	 As a single-center retrospective study, selection bias is inevitable, and the sample size, while reasonable, 
could be larger for a deep learning model; 
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(2)	 Although widely used, the definition of RPP based on annualized PB change requires validation against 
hard clinical endpoints (e.g., myocardial infarction) in long-term follow-up studies. 

Future research should focus on as follows: 
(1) External validation: Prospective, multi-center, large-scale validation to assess the model’s generalizability 

and robustness; 
(2)	 Association with clinical endpoints: Long-term follow-up to directly link model predictions to hard 

endpoints like acute coronary events, establishing its definitive prognostic value; 
(3)	 Technical integration: Exploring hybrid prediction models that more deeply integrate deep learning, 

radiomics, and clinical risk factors; 
(4)	 Workflow integration: Developing automated, integrated analysis pipelines incorporating image 

segmentation and prediction into clinical workstations to enhance practicality.

5. Conclusion
This study successfully developed a model for predicting coronary plaque progression based on a single baseline 
CCTA scan. The results demonstrate that a 3D convolutional neural network, incorporating concepts from 
radiomics, significantly outperforms traditional machine learning models. Its performance is comparable to current 
advanced radiomics and deep learning methods reported internationally. This confirms the substantial application 
potential and clinical translation value of advanced image analysis techniques for the precise risk assessment of 
coronary plaques.
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