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Abstract: Early diagnosis of Alzheimer’s disease (AD) is key to improving prognosis, but existing methods have 
limitations. This article reviews the research on AD-assisted diagnosis based on deep learning sponge segmentation and 
plasma biomarker fusion. Firstly, elucidate the pathological mechanism and clinical characteristics of AD, and clarify the 
core value of the corpus cavernosum as an imaging biomarker and plasma biomarkers (such as A β and p-tau) as molecular 
markers. Next, analyze the technical foundation of deep learning in medical image segmentation and summarize its 
application progress in sponge segmentation. MRI is the main modality, and after preprocessing, models such as U-Net 
variants can achieve high-precision segmentation (Dice coefficient exceeding 0.85). At the same time, the application 
of deep learning in plasma biomarker screening, AD diagnosis, and other scenarios was reviewed, and the model AUC 
can reach 0.85~0.92. Multimodal fusion achieves macroscopic and microscopic pathological complementarity by 
integrating imaging and plasma data, significantly improving diagnostic efficiency. However, it faces challenges such as 
data heterogeneity, insufficient sample matching, and poor model interpretability. Finally, it is pointed out that the future 
needs to focus on the construction of standardized datasets, the development of lightweight fusion models, and clinical 
translation, in order to provide technical support for accurate diagnosis of AD.
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1. Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative disease, and early diagnosis and intervention are 
crucial for delaying the course of the disease [1]. At present, clinical diagnosis relies on imaging and biomarkers, 
but traditional imaging indicators (such as mare body volume) have insufficient sensitivity to early pathological 
changes, and the diagnostic specificity of a single biomarker is limited. The sponge body, as a key imaging 
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biomarker for early microscopic pathological changes in AD, has not yet formed a mature technical solution 
for precise identification and quantitative analysis [2]. Meanwhile, although multimodal data fusion (imaging + 
biomarkers) is an important direction for improving diagnostic efficiency, existing research lacks a systematic 
fusion model for sponge body imaging features and plasma biomarkers [3]. Therefore, building a technical system 
of “accurate segmentation of corpus cavernosum - multimodal feature fusion - AD assisted diagnosis” has 
important clinical value and research significance for achieving early and accurate diagnosis of AD.

2. Basic theories and diagnostic biomarkers related to Alzheimer’s disease
2.1. Pathological mechanism and clinical characteristics of Alzheimer’s disease
The core pathological features of AD are abnormal deposition of amyloid beta protein (A β) to form senile 
plaques, and excessive phosphorylation of tau protein to construct neurofibrillary tangles, which together lead to 
neuronal damage, synaptic loss, and brain atrophy [4]. Clinically, it often presents as progressive development, with 
mild memory loss and cognitive decline as the main manifestations in the early stage. As the disease progresses, 
language disorders, loss of orientation, and personality changes gradually appear, and basic living abilities are 
lost in the late stage. At present, the mainstream diagnosis refers to the NIA-AA standard, combined with clinical 
symptoms, imaging, and biomarker evidence for comprehensive judgment. However, early symptoms are insidious 
and easily confused with normal aging or other dementias, making the diagnosis difficult.

2.2. Sponge tissue as the basis for AD imaging biomarkers
The corpus cavernosum is a structure in brain tissue with specific physiological functions, and its morphology, 
integrity, and neural function are closely related [5]. In the pathological process of AD, A β deposition and 
tau entanglement can induce sponge-like degeneration, volume reduction, and density changes in the corpus 
cavernosum, and the degree of this lesion is positively correlated with the clinical stage and cognitive impairment 
of AD, making it a core condition for becoming an AD imaging biomarker. Under imaging modalities such as 
MRI and CT, cavernous lesions can be clearly displayed through specific sequences, and their morphological 
parameters (such as volume, surface area, and density values) can objectively reflect the pathological progression 
of AD [6]. Accurately segmenting the corpus cavernosum and quantifying its lesion characteristics can provide 
intuitive imaging evidence for early screening and disease assessment of AD.

2.3. Types and screening of AD-related plasma biomarkers
AD plasma biomarkers are mainly divided into core biomarkers and potential biomarkers, with core categories 
including A β 42/A β 40 ratio, phosphorylated tau proteins (p-tau181, p-tau217), and neurofibrillary light chains 
(NfL), which are directly associated with AD core pathology [7]. Potential categories include inflammatory 
factors, metabolites, microRNAs, etc., indirectly reflecting AD related pathological damage. Screening relies on 
techniques such as proteomics and metabolomics, and differential expression molecules are screened through case-
control studies, followed by validation of their diagnostic efficacy through a multi-center cohort. High-quality 
biomarkers need to meet the characteristics of sensitivity, high specificity, and convenient detection [8]. Currently, 
the application of ultra-high sensitivity detection technologies such as Simoa has greatly improved the detection 
accuracy of plasma biomarkers, laying the foundation for their large-scale clinical application [9].
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3. The core technological foundation of deep learning in medical image 
segmentation
3.1. Basic framework and principles of deep learning
The core foundation of deep learning for medical image segmentation is convolutional neural networks (CNN), 
which extract local features of images through convolutional layers, compress dimensions to preserve key 
information through pooling layers, implement feature mapping and classification through fully connected layers, 
and finally output pixel-level segmentation results [10]. The mainstream segmentation model is based on the U-Net 
architecture, which has a symmetric encoding-decoding structure combined with skip connections, which can 
effectively integrate high and low-level features, balance positioning accuracy and semantic understanding ability, 
and become the “benchmark model” for medical image segmentation. In addition, FCN and SegNet achieve end-
to-end segmentation through deconvolution, while Transformer introduces self attention mechanism to enhance 
global feature correlation. Model training relies on annotated datasets, and the core is to calculate the difference 
between predicted and true labels through loss functions such as Dice loss and cross-entropy loss. Then, optimizers 
such as Adam and SGD iteratively update parameters until the model converges [11].

3.2. Technical difficulties and solutions in medical image segmentation
The core difficulties include: significant individual differences in images, high levels of noise interference, and 
strong heterogeneity of data in different modalities. The morphology of the lesion area is irregular and often 
overlaps with surrounding tissues. The scarcity of annotated data and high annotation costs result in insufficient 
generalization ability of the model [12]. Targeted breakthrough solution: At the data level, data augmentation 
techniques such as rotation, flipping, and elastic deformation are used to expand the sample size, and transfer 
learning is employed to reduce dependence on annotated data using pre trained models; At the technical level, 
introducing attention mechanisms (such as CBAM) to focus on the lesion area and improve feature discrimination; 
Adopting semi supervised/unsupervised learning to reduce reliance on manual annotation; Multi modal fusion 
technology combines different imaging advantages (such as soft tissue resolution of MRI and density resolution 
of CT) to enhance segmentation robustness; Optimize network structure to enhance fine-grained feature extraction 
capability for small lesion segmentation.

4. Research progress on sponge segmentation based on deep learning
4.1. Image modality selection and data preprocessing for sponge segmentation
The imaging modality for corpus cavernosum segmentation is mainly MRI, which has high soft tissue resolution 
and can clearly present the anatomical boundaries between the corpus cavernosum and surrounding nerves and 
blood vessels [13]. Especially, T2 weighted sequence shows better visualization of the morphology of the corpus 
cavernosum; CT, due to its strong density resolution, can assist in displaying calcification-related lesions, but its 
differentiation of soft tissues is insufficient, and it is rarely used alone for corpus cavernosum segmentation. Data 
preprocessing is the key to improving segmentation accuracy, and the core steps include: using Gaussian filtering 
and median filtering to remove image noise; By using registration technology to unify the spatial positions of 
different samples and eliminate differences in scanning positions; Perform grayscale normalization to standardize 
the range of pixel values and reduce the impact of device and scanning parameters; Firstly, the region of interest 
(ROI) is roughly extracted through threshold segmentation, region growing, and other methods to narrow down 
the processing range of subsequent deep learning models, reduce computational costs, and minimize background 
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interference.

4.2. Common deep learning models and application effects for sponge segmentation
U-Net and its variants are the mainstream models for sponge segmentation. The basic U-Net effectively captures 
fine-grained features and spatial position information of the sponge through encoding and decoding structures and 
skip connections, adapting to the segmentation needs of irregular sponge shapes [14]. Researchers often enhance 
feature focus on the corpus cavernosum region by integrating attention mechanisms such as SE and CBAM, or 
use multi-scale convolution to improve adaptability to different sizes of corpus cavernosum. Some studies attempt 
to use transformer combined with CNN to enhance global feature correlation and solve the problem of blurred 
boundaries between the corpus cavernosum and surrounding tissues [15]. From the perspective of application 
effectiveness, the optimized U-Net variant has the best segmentation performance, with Dice coefficients generally 
above 0.85, significantly better than traditional segmentation models such as FCN and SegNet. However, in 
scenarios with mild lesions and small volumes of the corpus cavernosum, there is still room for improvement in 
segmentation accuracy.

4.3. Key issues and improvement directions faced by the sponge body segmentation
The core issues include: the scarcity of publicly annotated datasets, and the reliance on professional physicians 
for corpus cavernosum annotation, which results in high costs and long cycles; The anatomical morphology of the 
corpus cavernosum varies greatly among different individuals, and the morphology becomes more irregular after 
lesions, which limits the generalization ability of the model; The boundary between the corpus cavernosum and 
surrounding tissues is blurred, especially in the lesion area where it is easily confused with adjacent structures, 
which affects the accuracy of segmentation. The improvement direction focuses on three dimensions: at the data 
level, promoting the joint construction of standardized annotated datasets by multiple centers, and combining 
semi supervised/unsupervised learning to reduce dependence on manual annotation; At the model level, develop 
lightweight adaptive networks to enhance adaptability to individual differences, and integrate multimodal image 
features to strengthen boundary discrimination; At the clinical level, strengthen the integration of the model with 
clinical needs, optimize the model through clinical feedback iteration, and enhance the clinical practicality of 
segmentation results.

5. Application of deep learning in the analysis of AD plasma biomarkers
5.1. Plasma biomarker detection and data preprocessing techniques
The core detection technology for AD plasma biomarkers mainly relies on ultra high sensitivity immunoassay, 
among which Simoa technology, with its single-molecule detection ability, can accurately quantify low 
concentration core biomarkers such as A β and p-tau, and is currently the mainstream technology for preclinical 
research and clinical translation; ELISA has low cost but limited sensitivity, and is often used for preliminary 
screening; Mass spectrometry technology is suitable for high-throughput screening of multiple biomarkers [16]. Data 
preprocessing is the key to ensuring the accuracy of analysis, and the core steps include: using outlier detection (such 
as Z-score method) to remove abnormal data and avoid extreme value interference; Eliminate differences in testing 
batches and equipment through standardization (such as Z-score normalization) or normalization; Combining 
feature selection algorithms such as analysis of variance and LASSO to screen for highly correlated biomarkers, 
reducing data dimensionality, and improving subsequent model training efficiency and generalization ability. 
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5.2. Core scenarios of deep learning for plasma biomarker analysis
The core scenarios focus on three main directions: firstly, biomarker screening and feature mining, utilizing 
the automatic feature learning ability of deep learning to identify potential biomarker combinations from high-
throughput plasma data, breaking through the limitations of traditional methods that rely on prior knowledge; 
Secondly, early diagnosis and risk stratification of Alzheimer’s disease (AD) can be achieved by constructing 
classification models (such as CNN, LSTM, MLP) and combining core biomarker data to distinguish AD 
patients from healthy individuals, mild cognitive impairment (MCI) patients, and even predict the risk of MCI 
to AD transition; The third is monitoring the progression of the disease, training a time-series model based on 
longitudinal plasma marker data, dynamically tracking changes in the disease, and providing a basis for evaluating 
treatment effectiveness. In addition, deep learning can integrate biomarker data with clinical information to 
enhance the robustness of diagnostic models [17].

5.3. Typical research cases and performance analysis
In typical cases, based on Simoa detection of A β 42/A β 40, p-tau181 and other data, combined with MLP or 
CNN constructed AD diagnostic models, the AUC can reach 0.85~0.92 in multi-center queues, and the sensitivity 
and specificity are better than traditional logistic regression models. Some studies have introduced attention 
mechanisms to strengthen the weight of key markers, further improving the diagnostic efficiency of early AD (AUC 
increased by 3% to 5%). However, existing research still has limitations: most cases are based on single-center 
small sample data, and generalization ability needs to be verified; Some models rely heavily on a large number 
of features and have poor interpretability. Overall, deep learning models have demonstrated high efficiency in 
plasma biomarker analysis, especially in the context of multi-biomarker integration analysis, and are an important 
technical path for achieving accurate diagnosis of AD.

6. Research on AD assisted diagnosis model based on multimodal fusion
6.1. Core logic and value of multimodal data fusion
The core logic of multimodal fusion is based on the pain point of “incomplete information of a single mode,” and 
the complementary verification of “structural morphology + molecular pathology” is achieved by integrating the 
image data related to cavernous segmentation and plasma biomarker data [18]. Imaging data (such as MRI sponge 
morphology parameters) can intuitively reflect the brain structural organic lesions caused by AD and reflect 
macroscopic pathological characteristics; Plasma biomarkers such as A β and p-tau can capture molecular-level 
pathological changes early and achieve microscopic pathological warning. The fusion of the two can break through 
the limitation of single-mode, which can not only make up for the problem that the image is insensitive to early 
mild lesions, but also solve the problem that the specificity of plasma markers is insufficient. Its core value lies in 
improving the diagnostic efficiency of AD, especially enhancing the sensitivity and specificity of early screening. 
At the same time, it can enrich the dimensions of disease assessment, provide more comprehensive basis for AD 
staging and progression prediction, and lay the foundation for the development of precision medical plans.

6.2. Challenges faced by multimodal fusion
The primary challenge of multimodal fusion is data heterogeneity. Image data is high-dimensional spatial structure 
data, while plasma biomarkers are low-dimensional numerical data. The two have significant differences in scale, 
distribution, and semantics, which increases the difficulty of fusion. Secondly, there are challenges in data quality 
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and matching [19]. Multi-center data have differences in scanning parameters and detection platforms, and the cost 
of synchronously obtaining high-quality images and plasma samples of the same subject is high, resulting in a 
scarcity of matching samples and limiting the model’s generalization ability [20]. In addition, there is a contradiction 
between complexity and interpretability at the model level: although deep fusion models (such as feature level 
fusion) can improve performance, they have complex structures, high computational costs, and the “black box” 
characteristics are difficult to meet the interpretability requirements of clinical diagnostic criteria. Finally, there 
are barriers to clinical translation, and there is a lack of unified standards for model performance validation. The 
compatibility with clinical diagnosis and treatment processes still needs long-term optimization.

7. Conclusion
This article summarizes the research on AD-assisted diagnosis using deep learning combined with corpus 
cavernosum segmentation and plasma biomarkers. Clarifying the diagnostic value of corpus cavernosum and 
plasma markers, deep learning can achieve high-precision corpus cavernosum segmentation (Dice coefficient over 
0.85) and efficient plasma marker analysis (diagnostic AUC 0.85–0.92). Multimodal fusion improves diagnostic 
efficiency through complementary macroscopic and microscopic pathology, but faces challenges in data, model, 
and transformation. In the future, it is necessary to focus on breakthroughs in standardized datasets, lightweight 
models, and clinical translation to assist in the accurate diagnosis of AD.
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