

Safety Study of Monosialotetrahexosylganglioside Sodium in the Treatment of Stroke

Yingxin Wang¹, Wenjing Lei², Peng Wang³, Chang Zhou⁴, Shoucheng Zhang^{5*}

¹ Department of Neurology, Nanjing Brain Hospital, Nanjing 210000, Jiangsu, China

² Department of Neurology, Qinhuai Medical District, Eastern Theater General Hospital, Nanjing 210000, Jiangsu, China

³ Department of Shenjing Internal Medicine, Lishui District People's Hospital, Nanjing 211200, Jiangsu, China

⁴ Department of Neurology, Jiangbei Campus, Zhongda Hospital, Southeast University, Nanjing 210031, Jiangsu, China

⁵ Department of Internal Medicine, Nanjing Gaochun People's Hospital, Nanjing 211300, Jiangsu, China

*Author to whom correspondence should be addressed.

Copyright: © 2025 Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), permitting distribution and reproduction in any medium, provided the original work is cited.

Abstract: *Objective:* To retrospectively analyze the safety and efficacy of monosialotetrahexosylganglioside sodium (GM1) in the treatment of stroke, and to provide a reference for clinical rational drug use. *Methods:* This study was a multicenter, single-arm, retrospective, observational study, which recruited stroke patients who were treated with GM1 from January 1, 2020, to December 31, 2023, as the research subjects, analyzed their adverse events and grades, and performed chi-square test and t-test on NIHSS scores and Barthel before and after intervention. Compare the scores before and after. *Results:* A total of 4405 patients were enrolled, and the NIHSS score of the patients decreased and the Barthel score increased after GM1 intervention, and there was a significant statistical difference before and after intervention ($P < 0.05$). A total of 1635 patients had adverse events, and 99.4% were mild, and severe was not seen. *Conclusion:* In this study, GM1 has high safety and significant efficacy in the treatment of stroke, and results suggest potential for clinical application, subject to further validation.

Keywords: Stroke; Tetrahexose ganglioside monosialic acid; Safety; Efficacy; Adverse events

Online publication: December 31, 2025

1. Introduction

Stroke refers to acute cerebrovascular disease caused by rupture or blockage of cerebral blood vessels, which ranks first among the causes of disability and death in China, with a rapid course and high fatality rate, and a serious poor prognosis is often seen in significant decline in language, motor and cognitive functions. In order to improve the quality of life of patients, therapeutic intervention is necessary for trunk muscle strength, balance and control of stroke patients. However, the current rehabilitation treatment process is mostly several years or even more than ten years, which is a heavy financial and mental burden for patients and their families. Based on the above, the research and development of some drugs to assist in the rehabilitation process has been put on

the agenda in the industry. Monosialotemhexosylganglioside (GM1) is one of the cell membrane components of mammals, which is mainly extracted from pig brain and has the potential to promote the repair of central nervous system injury. GM1 is the highest content in the central nervous tissue, which can effectively slow down the process of neurodegeneration, so that the damaged central nervous system can be repaired, and has an important regulatory role in the generation and regeneration of neurons.

In recent years, with the widespread application of the drug, adverse events have occurred frequently, but the treatment measures have been rarely reported, especially when the patient has dyspnea, anaphylactic shock and symptoms other than the adverse events indicated in the drug instructions, how to quickly and standardize the rescue treatment is particularly important, which can directly affect the health and life safety of the patient.

Therefore, this study solicited a retrospective and descriptive survey of stroke patients who used GM1 from January 1, 2020, to December 31, 2023, to provide a reference for the rational use of GM1 in the clinical treatment of stroke.

2. Data and methods

2.1. General information

This study is a multicenter, single-arm, retrospective, descriptive study. A total of 4405 stroke patients who received GM1 intervention in different hospitals from January 1, 2020, to December 31, 2023, were recruited and their clinical data were retrospectively analyzed. Inclusion criteria: (1) Language function deterioration, some facial and limb sensory dysfunction, symptoms for more than 24 hours, and CT and other imaging clinical examination results are stroke; (2) Previous use of GM1. Exclusion Criteria: (1) Patients who are allergic to GM1; (2) The body is currently accompanied by serious diseases of important organs such as heart, liver, and lungs; (3) Patients who are currently accompanied by mental illness and whose degree of mental abnormality cannot be graded^[1,2].

2.2. Information collection

The main data information collected is as follows:

- (1) Basic information: gender, age, height, weight, BMI;
- (2) Disease diagnosis and past history information: including various clinical diagnosis medical records and reports, drug use and allergy history;
- (3) Medication information: GM1 start time, administration method, intake medium, intake dose, infusion rate, combination medication, intake end time, etc.;
- (4) Adverse events: specific time of occurrence and disappearance, affected organs and specific symptoms, degree of grading, what kind of intervention measures, etc.;
- (5) Efficacy evaluation information: NIHSS and Barthel Index before and after treatment.

2.3. Statistical analysis

All statistical analyses were performed using R4.3.2, and the median, interquartiles, minimum, maximum, mean and standard deviation were used for the quantitative variables, and the number and proportion of patients were used for the qualitative variables. The evaluation of intervention effect describes the frequency and composition ratio of the indicators. The NIHSS score before and after the intervention was compared using the paired t-test

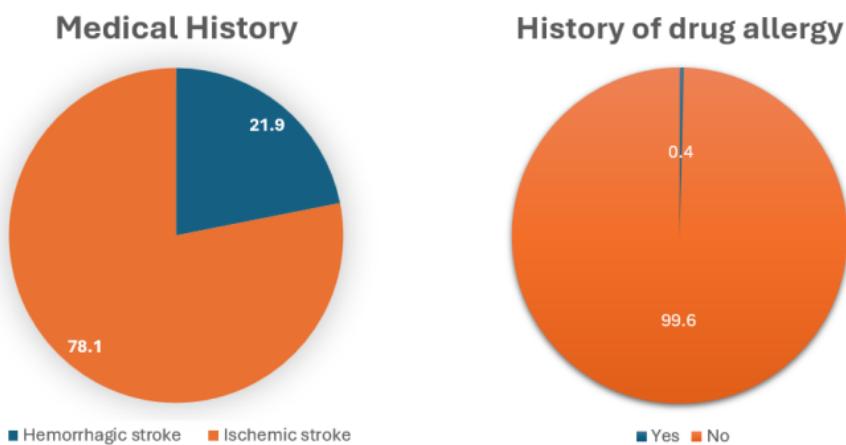
method, and the Barthel Index before and after the intervention was compared using the McNemar test, and the statistical criterion was $p < 0.05$ ^[3].

3. Results

3.1. Demographic characteristics of patients

In this study, a total of 4411 stroke patients who were treated with GM1 between January 1, 2020, and December 31, 2023, were collected, and a total of 6 patients were found to be excluded because their data did not meet the requirements, and finally, 4405 patients were included for analysis^[4]. Among them, there were 2,701 male patients and 1,704 female patients, with an average age of 59.1 years, an average height of 168.0cm, a weight of 67.2kg, and a BMI of 23.7. The results are shown in **Table 1**.

Table 1. Demographic characteristics of patients

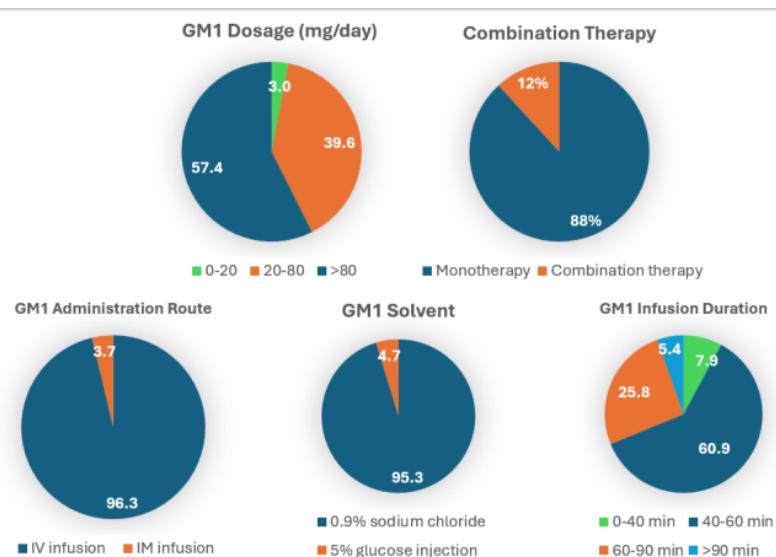

Number of patients included	N = 4405
Age	
The mean \pm standard deviation	59.1 \pm 11.9
Range	16.8–97.4
Median (Q1–Q3)	59.6 (52.0–66.9)
Gender	
Man	2701 (61.3)
Woman	1704 (38.7)
Height (cm)	
The mean \pm standard deviation	168.0 \pm 7.6
Min-Max	142.0–191.0
Median (Q1–Q3)	169.0 (162.0–174.0)
Weight (kg)	
The mean \pm standard deviation	67.2 \pm 11.4
Min-Max	40.0–168.0
Median (Q1–Q3)	68.0 (60.0–75.0)
BMI	
The mean \pm standard deviation	23.7 \pm 3.2
Min-Max	14.5–55.4
Median (Q1–Q3)	23.6 (21.8–25.6)

3.2. Patient's disease diagnosis and anamnesis information

Among the 4405 patients, 3440 patients were diagnosed with ischemic stroke, accounting for 78.1%, and 965 patients were diagnosed with hemorrhagic stroke, accounting for 21.9%. Sixteen of all patients, accounting for 0.4%, had a history of drug allergy. The results are shown in **Table 2** and **Figure 1**.

Table 2. Diagnostic information and drug allergy history [n(%)]

Anamnes/allergy history	Number of people (percentage)
Past history	
Hemorrhagic stroke	965 (21.9)
Ischemic stroke	3440 (78.1)
History of drug allergy, n(%)	
Be	16 (0.4)
Not	4389 (99.6)

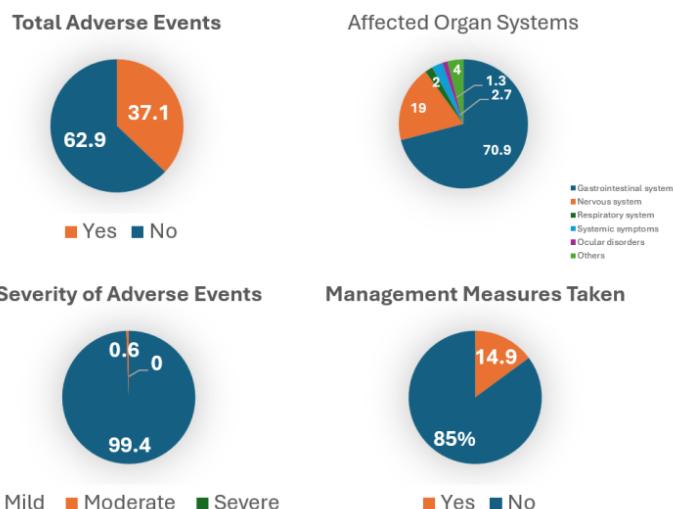

Figure 1. Diagnostic information and drug allergy history.

3.3. Patient medication information

The average number of days GM1 was 11.8 days in the included studies. A total of 4241 cases (96.3%) were mainly intravenous infusion, and 164 cases (3.7%) were intramuscular injection. Among the patients with intravenous infusion, 4041 patients received GM1 solvent, were 0.9% sodium chloride injection, accounting for 95.3%. There were 200 patients with 5% glucose injection as the solvent, accounting for 4.7%. Among the patients with intravenous infusion, there were 337 patients with a GM1 infusion time of 0–40 minutes, 2581 patients with 40–60 minutes, 1095 patients with 60–90 minutes, and 228 patients with more than 90 minutes. Among all patients, there were 130 patients with GM1 doses of 0–20 mg/day, 1748 patients with 20–80 mg/day, and 2527 patients with more than 80 mg/day. Among all patients, 3886 patients were treated alone, accounting for 88.2%; 519 cases were combined with drugs, accounting for 11.8%. The results are shown in **Table 3** and **Figure 2**.

Table 3. Patient medication information table

Medication information	
Days of GM1 medication (days)	
The mean \pm standard deviation	11.8 \pm 8.3
Min–Max	1.0–90.0
Median (Q1–Q3)	8.0 (7.0–14.0)
GM1 dosage mode	
Intravenous drip	4241 (96.3)
intramuscular injection	164 (3.7)
GM1 drug solvent	
0.9% sodium chloride injection	4041 (95.3)
5% glucose injection	200 (4.7)
GM1 instillation time	
0–40 minutes	337 (7.9)
40–60 minutes	2581 (60.9)
60–90 minutes	1095 (25.8)
More than 90 minutes	228 (5.4)
GM1 dosage (mg/day)	
0–20	130 (3.0)
20–80	1748 (39.6)
> 80	2527 (57.4)
Combination medication	
Medication alone	3886 (88.2)
Combination medication	519 (11.8)


Figure 2. Patient medication information.

3.4. Information on adverse events of patients

Of the total 4405 participants, 1635 had adverse events, with an incidence rate of 37.1%. Digestive symptoms (such as bloating, abdominal pain, diarrhea, vomiting, decreased appetite, etc.) occurred in up to 70.9% of all adverse events. The vast majority (99.4%) of adverse events were mild, and no serious adverse events occurred. Of these, 244 patients (14.9%) had management measures for adverse events^[5-7]. The results are shown in **Table 4** and **Figure 3**.

Table 4. Information table of adverse events of patients

Name	
Total adverse events	
Yes	1635 (37.1)
Not	2777 (62.9)
Adverse reactions affect the system and symptoms	
Digestive system (such as bloating, abdominal pain, diarrhea, vomiting, decreased appetite, etc.).	1160 (70.9)
Neurological system (e.g., transient speech disorders, confusion, lethargy, rare seizures, tinnitus, deafness, dizziness, etc.).	310 (19.0)
respiratory system (respiratory distress, respiratory paralysis, shortness of breath, etc.).	33 (2.0)
Systemic symptoms (profuse sweating, chills and tremors in the limbs, sore limbs, bruising of the lips and limbs, etc.).	44 (2.7)
Eye diseases (such as blurred vision, pain in both eyes, swelling of the upper eyelids, conjunctival congestion, tearing, etc.).	22 (1.3)
other	66 (4.0)
Adverse event severity	
Mild	1625 (99.4)
Moderate	10 (0.6)
Severe	0 (0.0)
Whether to take treatment measures	
Be	244 (14.9)
Not	1391 (85.1)

Figure 3. Infographic of patient adverse events.

3.5. Efficacy evaluation information

Before GM1 treatment, the mean NIHSS score of all patients was 14.0 points, and the mean NIHSS score after treatment was 10.1, with an average decrease of 3.9 points. Before GM1 treatment, there were 742 patients with Barthel scores below 20 points, 1575 cases with 20–40 points, 1667 cases with 40–60 points, and 421 cases with 60 points or more. A total of 741 cases had Barthel scores below 20 points, 935 cases with 20–40 points, 1056 cases with 40–60 points, and 1673 cases with more than 60 points after medication. The Wilcoxon test results showed statistical significance. The results are shown in **Table 5**.

Table 5. Patient efficacy evaluation table

	Before medication	After medication	Statistics	P-value
NIHSS score (mean \pm SD)	14.0 \pm 8.0	10.1 \pm 8.6	37.974	< 0.001
Barthel Index			1122162	< 0.001
20 points or less	742 (16.8)	741 (16.8)		
20–40	1575 (35.8)	935 (21.2)		
40–60	1667 (37.8)	1056 (24.0)		
60 or more	421 (9.6)	1673 (38.0)		

4. Discussion

Stroke is a sudden cerebrovascular disease, and its urgency and severity have always been a major medical and health problem at home and abroad. With the change of modern lifestyle, the incidence of stroke is gradually getting younger, which has triggered scholars in the industry to rethink the treatment of this disease^[8,9]. At present, the management of the disease is gradually changing from traditional treatment methods to individualized and personalized treatment, not only considering the patient's clinical symptoms, but also taking into account the patient's physique, economic situation and personal needs. Under the trend of individualized treatment, the application of GM1 has shown significant therapeutic effects and high safety.

Of the total 4405 patients in this study, only 1635 cases experienced adverse events, with an incidence rate of 37.1%. Among them, digestive system symptoms were the main ones, accounting for 70.9%; 19.0% of neurological symptoms and 2.7% of systemic symptoms, such as profuse sweating, chills, and trembling limbs, sore limbs, etc.; There are also a few respiratory symptoms, eye diseases, and other symptoms that occur. It is worth noting that 99.4% of the adverse events were only mild, and no patients had severe adverse events, which can be considered to be safe for GM1 in the treatment of stroke.

In terms of treatment effectiveness, the average NIHSS score of all patients before treatment with GM1 was 14.0 points, and the average NIHSS score after treatment was 10.1, with an average decrease of 3.9 points. The Barthel Index after treatment was statistically significant by Wilcoxon's test, and it can be considered that GM1 effectively improved the recovery of stroke patients and improved their daily living ability of stroke patients.

5. Conclusion

To sum up, GM1, as a highly safe brain-protective drug, can treat stroke well, and it has a significant effect

in promoting neurological function recovery and improving quality of life. In the face of the trend of younger stroke, individualized and personalized treatment strategies are particularly important. Future research should focus on how to optimize the treatment regimen of GM1 to improve its safety and therapeutic efficacy to better meet the treatment needs of different patients. At the same time, strengthening the study of GM1 mechanisms may provide a theoretical basis and technical support for the development of new therapeutic drugs.

Disclosure statement

The authors declare no conflict of interest.

References

- [1] Shen H, Jiang Q, Li L, Wang S, 2019, Effect of Plasmin Combined with Thrombocytosis on Inflammatory Factors in Stroke Patients. *Chinese Journal of Clinical Practical Medicine*, 10(3): 51–53.
- [2] Zhu Z, Yang W, Chen R, et al., 2019, Effect of Acupuncture Point Injection of Rat Meridian Growth Factor on Walking Function in Patients with Foot Ptosis and Varus after Stroke. *Journal of Cardiovascular and Cerebrovascular Diseases of Integrative Traditional Chinese and Western Medicine*, 17(8): 1145–1147.
- [3] Hui X, Zhang J, 2022, Clinical Study of Meclofen Ester Combined with Monosialic Acid Tetrahexosyl Ganglioside in the Treatment of Neonatal Hypoxic-Ischemic Encephalopathy. *Modern Medicine & Clinic*, 37(3): 513–516.
- [4] Chen X, Feng M, Liang Y, 2017, Effect of Erythropoietin Combined with Monosialic Acid Tetrahexosyl Ganglioside in the Treatment of Neonatal Hypoxic-Ischemic Encephalopathy. *Guangdong Medicine*, 38(5): 784–785 + 789.
- [5] Wang Y, Shi E, 2020, Two Cases and Analysis of Adverse Reactions Caused by Monosialic Acid Tetrahexosyl Ganglioside Sodium Injection. *Northern Pharmacy*, 17(9): 170–171.
- [6] He H, Pan Y, Yang X, et al., 2018, Analysis of Adverse Reactions of Monosialic Acid Tetrahexosyl Ganglioside Sodium Injection. *Straits Pharmacy*, 30(9): 268–270.
- [7] Huang X, Wu W, Li Q, et al., 2017, Clinical Application Monitoring Study of Monosialic Acid Tetrahexosyl Ganglioside Sodium Injection in China. *China Pharmacy*, 28(29): 4085–4089.
- [8] Wang P, 2020, Retrospective Analysis of 619 Serious Adverse Drug Reaction Reports. *Anhui Pharmaceutical*, 24(8): 1693–1696.
- [9] Wu W, Jing J, Lu Z, et al., 2020, Analysis of 182 Serious Adverse Drug Reactions/Events in a Hospital. *China Pharmacovigilance*, 17(11): 803–807 + 817.

Publisher's note

Bio-Byword Scientific Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.