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Abstract: Background: Resting-state functional connectivity (FC) has been nominated as an effective method for elucidating 
the neural mechanisms underlying chronic pain. To date, whole-brain FC alterations in chronic knee osteoarthritis (KOA) 
remain largely unknown. Purpose: To investigate the functional connectivity patterns across the entire brain in patients 
with knee osteoarthritis (KOA) using resting-state functional magnetic resonance imaging (rs-fMRI). Methods: The 
current rs-fMRI analysis included 56 well-characterized KOA patients and 20 healthy controls (HCs), with data obtained 
from OpenNeuro. To identify aberrant topological organization in the brains of KOA patients, the study employed a graph 
theoretical approach. Additionally, the independent component analysis was conducted to characterize both intra-network 
and inter-network brain connectivity in these individuals. Results: Both the KOA cohort and healthy control cohort exhibited 
small-world characteristics in brain functional networks. Additionally, compared to HCs, KOA patients showed altered global 
properties, specifically characterized by reduced global efficiency and increased assortativity. At the nodal level, the KOA 
patients exhibited decreased degree centrality and betweenness centrality in the right thalamus. Furthermore, independent 
component analysis indicated abnormal FC within the anterior default mode network (DMN) and salience network (SN) 
in this patient cohort. The inter-network interactions did not show intergroup differences after multiple-test correction. 
Conclusion: The widespread functional abnormalities observed from a whole-brain network perspective in subjects with KOA 
pain may provide more comprehensive insights and reinforce the grasp of the neural mechanisms underpinning KOA.
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1. Introduction
Knee osteoarthritis (KOA) represents the most common form of joint disorder, marked by progressive deterioration 
and subsequent breakdown of articular cartilage [1,2], often leading to secondary damage to adjacent structures 
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such as bones and ligaments. Pain represents the predominant clinical manifestation of knee osteoarthritis (KOA), 
leading to reduced mobility and a diminished quality of life for patients [3]. Given its high prevalence, significant 
functional limitations, and substantial socioeconomic burden, knee osteoarthritis (KOA) has become a critical 
global public health concern [4–7]. Unfortunately, treatment regimens for KOA remain far from satisfactory. 
Limited understanding of the pathophysiological mechanisms is at least partially responsible for the experience, 
maintenance, and development of KOA. 

Resting-state functional magnetic resonance imaging (rs-fMRI) over the past few decades has unraveled 
the neurophysiological processes underlying chronic pain disorders and created biomarkers related to cognitive, 
nociceptive, and social dimensions of pain [8–12]. A wealth of functional neuroimaging research has demonstrated 
that KOA exhibited significant structural remodeling and functional alterations in brain regions [13–16]. Functional 
connectivity (FC) denotes the temporal correlation of a neurophysiological index measured across distinct brain 
regions [17] and has been extensively employed in studies using rs-fMRI. However, most studies have used narrow 
seed-based resting-state FC approaches to analyze rs-fMRI data [13,18,19], knowledge about the functional integrity 
of whole-brain networks in individuals with KOA remains limited. 

Analyses of rs-fMRI data, such as graph theoretical analysis and independent component analysis (ICA), 
have become increasingly popular for mapping brain activity, facilitating the investigation of the whole-brain 
network reorganization. Graph theoretical analysis views the entire brain as a complex network consisting of highly 
interconnected regions (referred to as nodes) that exchange bidirectional information [20–22]. This approach provides 
structured frameworks for measuring topological and organizational characteristics of complex networks [17,23]. In 
recent years, a handful of studies have tried to explore this method for analyzing rs-fMRI data of both normal and 
damaged human brains [24–29]. By contrast, ICA is a data-driven method to decipher spatially independent components 
of coherent signals, enabling hypothesis-free and observer-independent assessment of interactions within and between 
resting-state networks (RSNs) [30]. Chronic pain may be associated with metabolic alterations within large-scale 
distributed networks (e.g., default mode network, salience network, and central executive network) that comprise 
the pain connectome. Research into intra- and inter-network connectivity has significantly advanced our knowledge 
of large-scale functional organization in both healthy and disordered brains [31–33]. However, it is unclear how brain 
networks change in functional connectivity within and between RSNs in KOA. 

Considering the aforementioned factors, our objectives were to: (1) apply graph theory methods to quantify 
topological differences in whole-brain networks, and (2) utilize ICA to identify distinct FC patterns within and 
between RSNs. The study hypothesized that: (1) the small-world attribute of the whole-brain networks in KOA 
would be preserved, but KOA would be characterized by abnormal topological features (both globally and locally) 
of functional networks compared with HCs, and (2) specific regional FC changes would be observed linked to 
KOA of RSNs. 

2. Materials and methods
2.1. Participants
The rs-fMRI data employed in our research were acquired from OpenNeuro (https://openneuro.org/). Participants 
provided written informed consent sanctioned by the Northwestern University Institutional Review Board 
committee (STU00039556). The open sharing of rs-fMRI data includes 76 subjects, categorized into three distinct 
groups, and the data was initially collected to identify and validate the predictability of clinical placebo response 
based on rs-fMRI brain connectivity [34]. However, the data involved in our study were pre-treatment data, so these 
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data can be analyzed for two groups instead of four, including 20 HCs (mean age =57.90 ± 6.66 years old, 10 
males and 10 females) and 56 KOA patients (mean age = 57.91 ± 6.96 years old, 26 males and 30 females). No 
significant differences comparing demographic variables were observed in age (p = 0.995) and gender (p = 0.784). 
Inclusion and exclusion criteria for all participants can be found below.

Inclusion criteria:
(1) Participants must be between 45 and 80 years old.
(2) Confirmed by ACR guidelines, with radiographic evidence (Kellgren-Lawrence grade II-IV).
(3) A visual analog scale (VAS) score exceeding 5 out of 10 within 48 hours before screening and the first visit.
(4) Symptoms must have persisted for at least one year.
(5) Daily pain relief drugs required to control osteoarthritis symptoms.
Exclusion Criteria:
(1) Use of MAO inhibitors or centrally acting drugs for pain or depression.
(2) Presence of narrow-angle glaucoma.
(3) Poorly managed hypertension.
(4) Other chronic conditions: Inflammatory arthritis, fibromyalgia, or persistent pain disorders.
(5) Females who are pregnant, attempting conception, or breastfeeding.
(6) Diagnosis of major depressive disorder.
(7) Excessive alcohol consumption or prior liver disease.
(8) Restricted medications: MAO inhibitors, triptans, serotonin precursors (e.g., tryptophan).
(9) Drug interactions: CYP1A2 inhibitors, Thioridazine, or antidepressant usage.
(10) Type 1 or type 2 diabetes.
(11) Any condition that, in the investigator’s judgment, may hinder compliance, distort findings, or pose risks.
(12) MRI contraindications: Metal fragments in facial or ocular regions, or prior metalwork employment;

Electronic implants (e.g., pacemakers, defibrillators, cochlear devices, neurostimulators); Prior
cerebrovascular surgery; Severe claustrophobia (inability to tolerate confined spaces); Body piercings or
tattoos; Weight exceeding 250 pounds; Detectable brain anomalies.

2.2. MR data acquisition
All subjects underwent MRI scanning (3T Siemens Trio whole-body) to acquire T1-weighted magnetization-
prepared rapid gradient echo (MPRAGE) structural images (repetition time: 2.5 milliseconds; echo time: 3.36 
milliseconds; flip angle: 9°; voxel size: 1.00 × 1.00 × 1.00 mm; field of view: 256 mm; matrix: 256 × 256; and 
slices: 160. High-resolution whole-brain rs-fMRI images were acquired using a T2*-weighted echo planar imaging 
(EPI) sequence (repetition time: 2500 milliseconds; echo time: 30 milliseconds; flip angle: 90°; slice thickness: 3 
mm; matrix: 64 × 64; number of slices: 40; and 300 volumes).

2.3. Functional data preprocessing
The rs-fMRI data were preprocessed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) working on MATLAB 
R2016a. The preprocessing procedure for ICA analysis included the following stages: the first 10 volumes of each 
functional data set were removed to reduce equilibrium effects. The BOLD runs were subsequently corrected for 
slice timing and head motion. The BOLD images were spatially normalized to the Montreal Neurological Institute 
(MNI) standard template and resampled to 3-mm cubic voxels. Subsequently, the resulting data were smoothed by 
a 6-mm full-width at half-maximum Gaussian kernel. In addition to the first four steps of preprocessing for ICA, 
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further preprocessing for graph theory was conducted as follows: Detrending and nuisance regression procedures 
were applied to eliminate linear trends and non-neural-related signals, and the corrected functional images were 
further low-pass filtered (0.01–0.08 Hz).

2.4. Graph theoretical analyses
The whole-brain functional network construction and network metrics calculation were performed using the 
MATLAB-based software GRETNA toolbox (https://www.nitrc.org/projects/gretna). In topological networks, 
nodes and edges ( FC between nodes) constitute the foundational structure. In the brain, nodes represent distinct 
brain regions, while edges signify the statistical relationships between BOLD signals across these regions. To 
define the brain nodes, a widely accepted AAL90 atlas was used to divide the entire brain into 90 cortical regions, 
each region representing a node within the network [35]. Pearson correlation coefficients of BOLD signals between 
all possible pairs of nodes were calculated to derive the brain’s connectivity matrix. Individual Pearson correlation 
matrices were then converted using Fisher’s r-to-z transformation. Finally, topological metrics of the constructed 
FC matrix were calculated for each subject. For this study, the study selected commonly used global network 
metrics, including small‐world attribute (lambda, gamma and sigma), global efficiency, and assortativity, to 
measure the properties of global networks. For the relatively stable nodal network, local metrics included nodal 
efficiency, betweenness centrality, and degree centrality. The results were visualized using BrainNet Viewer [36] 
(https://www.nitrc.org/projects/bnv/).

To minimize bias resulting from choosing a single threshold, the study used an area under the curve (AUC) 
approach for each network measure. This method provides a comprehensive summary metric for assessing brain 
network topology and is effective in identifying topological changes associated with brain dysfunction [37,38]. 
Consistent with previous studies [38–40], Graph topological metrics were therefore calculated for all individual brain 
networks at network sparsity thresholds ranging from 0.10 to 0.34 with sparsity steps of 0.01, ensuring accurate 
estimation of “small-world” parameters and minimizing the inclusion of spurious edges [41–44].

2.5. Independent component analysis
Group independent component analysis (GICA) was performed using the GIFT Toolbox (https://trendscenter.
org/software/gift/) . The steps for conducting group ICA and detecting intrinsic connectivity networks (ICNs) 
are shown as follows: the data was reduced in dimensionality through a two-step principal component 
analysis [45]. 50 spatially independent components was auto-estimated through the Minimum Description Length 
(MDL) criteria. Infomax algorithm was employed for group independent component analysis, and the process 
was iterated 100 times using ICASSO (http://research.ics.aalto.fi/ica/icasso/) to ensure component consistency. 
The time courses and spatial maps for each subject were reconstructed, followed by a Fisher Z transformation for 
further investigation.

2.6. Statistical analysis
Analysis of the clinical and demographic data from all participants was performed using SPSS statistics software. 
Group comparisons were conducted by independent 2-sample t-tests for age and chi-square tests for sex. 

For graph theory analysis, 2-sample t test with multiple comparisons (FDR corrected) was conducted to compare 
the differences in topological properties between KOA patients and HCs, including the AUC of each global network 
metric and each local network metric. The significance level was set at p < 0.05 (control covariates: age, gender).

For independent component analysis, to compare group differences in the intra-network FC, a one-sample t 



5 Volume 3; Issue 4

test (p < 0.05, FWE corrected) was conducted separately for KOA patients and HCs to generate sample-specific 
spatial pattern masks for each group. Each mask of the KOA patients and HCs was subsequently merged into 
a total mask for each component. Furthermore, measures of inter-network FC between KOA patients and HCs 
were compared using 2-sample t tests with age and sex as covariates (p < 0.05, FWE corrected). In addition, for 
inter-network FC analysis, the study derived the time-series of each RSN from the ICA procedure and calculated 
Pearson’s correlations between pairwise combinations. To enhance normality, these values were then transformed 
to Z-scores. Group differences in inter-network connectivity were compared using a 2-sample t test (p < 0.05, FDR 
corrected), controlling for age and sex as nuisance covariates.

3. Results
3.1. Group comparisons of global and nodal topological properties
In the wide-defined sparsity range, the lambda values hovered at 1, both gamma and sigma exceeded 1. These 
findings suggest that both two groups exhibit a “small-world” organization in resting-state networks (Figure 1A). 
For the global metrics, a decreased AUC of the global efficiency (p = 0.048, t = 2.01) and an increased assortativity 
(p = 0.019, t = -2.39) were observed in KOA patients compared with the HCs (Figure 1B). For the local metrics, 
patients with KOA had a decreased degree centrality (p < 0.001, t = 4.28) and betweenness centrality (p < 0.001, t 
= 4.58) of the right thalamus (Figure 2).

Figure 1. Group differences in global network metrics between KOA patients and HCs. (A) Small‐world properties of 
sparsity threshold (10%‐34%, with a step of 1%). The line and shading show the mean and 95% confidence interval of 
between‐group differences. (B) Violin plots illustrating the area under the curve (AUC) parameters of the global efficiency 
and assortativity for KOA patients and HCs.



6 Volume 3; Issue 4 

Figure 2. Group differences in degree centrality and betweenness centrality at the nodal level. Insignificant nodes are 
shown as green spheres, whereas blue (KOA< HC) spheres denote significant differences after FDR correction. Violin 
plots illustrating the area under the curve (AUC) parameters of degree centrality and betweenness centrality of the right 
thalamus for KOA patients and HCs.

3.2. Group comparisons of functional connectivity within and between RSNs
Nine functionally classical RSNs were extracted via visual inspection from all subjects (Figure 3). Compared with 
HCs, patients with KOA showed increased FC in left medial frontal gyrus of the anterior default mode network 
(aDMN), decreased FC in right insula of the salience network (SN), and reduced right superior tempror gyrus 
of the auditory network (AUN) compared with HCs (Figure 4 and Table 1). No significant differences were 
observed in inter-network FC between KOA patients and HCs.
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Figure 3. Spatial maps of one-sample t-test in nine RSNs of all subjects. The colorbar indicates the t value. aDMN: 
anterior default mode network; pDMN: posterior default mode network; SN: salience network, SMN: sensorimotor 
network; LFPN: left frontoparietal network; RFPN: right frontoparietal network; dAN: dorsal attention network; AUN: 
auditory network; mVN: medial visual network.

Table 1. Brain regions with significant differences in intra-network functional connectivity between KOA 
patients and healthy controls

RSN Brain Regions Cluster Size
MNI

Peak t Score
X Y Z

aDMN L Medial frontal gyrus 43 -18 33 21 5.11

SN R Insula 66 42 21 -9 -4.78

AUN R Superior tempror gyrus 17 33 0 -18 -5.38

aDMN: anterior default mode network; SN: salience network; AUN: auditory network; MNI, Montreal Neurologic 
Institute; L, left; R, right.
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Figure 4. Comparison of intra-network functional connectivity between the KOA and HC groups. The red volume 
indicates a region whose functional connectivity was increased in KOA compared with HCs. Each blue volume indicates a 
region whose functional connectivity was decreased in the KOA .

4. Discussion
The study questioned whether differences existed in whole-brain network topology and how information transfer 
within intra- and inter-networks under chronic knee pain. Therefore, the study undertook unsupervised graph-
theory-based analyses and ICA to identify a widespread network-level pathophysiological profile in KOA. Our 
key findings were as follows: 

(1) Both groups displayed a small-world structure. Patients with KOA exhibited a decreased AUC of global
efficiency and an increased AUC of assortativity at the global level. Additionally, decreased degree
centrality and betweenness centrality in the right thalamus were observed in patients with KOA at the
local level.

(2) Connectivity within the aDMN, SN, and AUN altered between the two groups.
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4.1. Global and regional topological alterations of functional networks in KOA compared 
with HCs
At the global level, small-worldness, a fundamental trait of complex network structures [41,46], signifies an optimal 
equilibrium between global integration and local segregation. Both groups exhibited the characteristic small-world 
property, which aligns with findings reported in previous research studies [47,48]. Compared to controls, global 
efficiency was significantly decreased in the KOA group. Global efficiency is a robust indicator of information 
transmission within a network [43] and is commonly used to estimate the integration of brain networks. In this 
study, the observed decrease in global efficiency among KOA patients compared to controls may indicate impaired 
integration of information between key brain hubs. Such disrupted connectivity across distributed neural regions 
could contribute to altered cognitive and perceptual processing [49]. Abnormal topological organization has been 
reported in a previous study involving KOA cohorts [48]. However, global efficiency showed no significant 
difference between KOA patients and HCs, which is inconsistent with our findings. By contrast, KOA patients 
showed a higher value for assortativity. Assortativity, which measures network segregation, indicates neural 
networks’ susceptibility to detrimental matters or neuropathological conditions [50,51]. A higher assortative value 
indicates that vertices are more likely to connect with other vertices of similar degree, leading to a more resilient 
network that can better inhibit the spread of information. Notably, the assortativity metric has been scarcely 
reported previously and may provide a more thorough assessment of the topological brain network architecture 
in KOA patients. Taken together, the decreased AUC of global efficiency and the increased AUC of assortativity 
indicate disruptions in brain networks related to functional integration and segregation in KOA patients. This 
suggests an imbalance between global integration and local segregation, highlighting disrupted energy expenditure 
in spontaneous brain activity and implying impaired parallel information transfer within the brain functional 
networks of these patients. 

At the local level, the study found decreased nodal centrality in the right thalamus. Degree centrality 
measures the sum of links’ weights connected to a node, depicting the significance of individual brain regions in 
influencing adjacent regions. Meanwhile, betweenness centrality evaluates how frequently a node participates 
in the shortest paths between all possible node pairs, reflecting its importance in facilitating communication 
within the network. Both metrics have been extensively used to assess brain network dysfunction across various 
clinical conditions [38,52,53]. Interestingly, the changes in nodal network topology observed in our study were 
primarily evident in centrality properties, particularly in the degree centrality and betweenness centrality of the 
right thalamus. The thalamus serves as a vital element of the pain matrix and its role in modulating nociception in 
neuropathic pain conditions has been extensively studied [54,57]. A seed-based analysis revealed abnormal resting-
state and task-related functional connectivity and effective connectivity between the thalamus and cortex, with 
multiple regions involved, in the KOA cohort compared with HCs [58]. Our results extends these previous studies 
by revealing abnormal degree centrality and betweenness centrality of the right thalamus, further highlighting the 
thalamus’s significant and intricate role in KOA.

4.2. Intra‑network connectivity alterations in KOA compared with HCs
Our study provides evidence that KOA patients showed impaired intra-network FC of the aDMN, SN and AUN 
compared to HCs. The default mode network (DMN) is related to higher-order functions and internal states 
monitoring for the detection of prominent events. Many neuroimaging studies have shown that the DMN could 
regulate the perception of pain through autonomic and antinociceptive descending modulation networks [59,60]. 
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Previous studies have consistently reported aberrant FC within the DMN in chronic pain conditions [8,61–65]. In 
our study, the medial frontal gyrus, a key component of the aDMN, exhibited reduced FC in KOA patients, 
highlighting its potential role in the functional reorganization of brain networks in KOA. The medial frontal gyrus, 
a region involving multiple psychological domains, including cognitive control, pain, and emotion [66–68], has been 
previously identified in fMRI studies on pain [69] and depression [70]. An epidemiological study estimated that 
52% of patients with chronic pain contend with mental health challenges [71]. including depression, experiencing 
a decline in quality of life. Thus, it is believed that impaired FC in the medial frontal gyrus may contribute to 
the development of mood and emotional instabilities such as depression in KOA. In addition, the medial frontal 
gyrus is essential for attentional processing in relation to pain, contributing to the integration and interpretation 
of sensory inputs [72]. Therefore, the observed reductions in FC within the medial frontal gyrus could be linked to 
impairments in attentional control and sensory information processing in KOA patients.

The SN, responsible for monitoring sensory input changes and coordinating brain activity to prompt 
behavioral responses, is anticipated to be pivotal in chronic pain. Network alterations in the SN are most 
commonly reported in chronic pain conditions [73–77]. As the primary causal output within the SN, the insula 
is recognized as a crucial brain region involved in pain-attention interactions and serves as a key hub in pain 
regulation pathways [78,79]. Numerous neuroimaging studies have demonstrated abnormal FC driven by the insular 
cortex in patients across various chronic pain conditions [13,80–83]. Prior research has demonstrated that individuals 
with KOA exhibit decreased gray matter volume in the bilateral insular cortex, alongside elevated fractional 
amplitude of low-frequency fluctuations (fALFF) in the left insula [84]. In our study, KOA patients exhibited 
significantly reduced FC in the insular cortex compared with pain-free controls, further pointing to the importance 
of insular cortex in the functional reorganization of brain networks associated with chronic KOA pain. 

AUN is believed to be involved in memory processes, and the changes in AUN may be associated with the 
memory impairment in chronic pain patients. However, the specific role of the AUN in neuroimaging research on 
pain remains to be fully elucidated and warrants further investigation. 

Several limitations constrain the interpretation of the results for consideration. Firstly, our study is limited 
by its cross-sectional design and cannot uncover causal relationships in the etiology and persistence of KOA. 
Longitudinal studies, including investigations into remission and recurrence patterns across the lifespan, are 
needed. Secondly, the graph theoretical approach provides insights into only one aspect of the complex neural 
mechanisms underlying chronic pain disorders. Future research should explore additional facets of network 
topology. Lastly, the study is constrained by a relatively small control group, therefore introducing some 
uncontrolled bias. Future studies should validate these findings by running a similar sample of patients.

5. Conclusion
In summary, the study found abnormal topological architecture in functional brain networks and aberrant FC in 
specific cognitive networks in KOA patients. Measuring whole-brain FC patterns in KOA patients may elucidate 
pain sensitization mechanisms, thereby perpetuating symptoms and contributing to KOA development. Overall, 
our findings may elucidate the pathophysiology of KOA and ultimately inform mechanism-based therapies for 
various chronic pain conditions. 
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