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Abstract: Since the establishment of financial models for risk prediction, the measurement of volatility at risky market has 

improved, and its significance has also grown. For high-frequency financial data, the degree of investment risk, which has 

always been the focus of attention, is measured by the variance of residual sequence obtained following model regression. By 

integrating the long short-term memory (LSTM) model with multiple generalized autoregressive conditional 

heteroscedasticity (GARCH) models, a new hybrid LSTM model is used to predict stock price volatility. In this paper, three 

GARCH models are used, and the model that can best fit the data is determined.  
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1. Introduction 

Since the establishment of KOSPI 200 options market on July 7, 1997, there has been a significant increase 

in the volume of trade, alerting investors and financial institutions of the risks brought about by the 

increased volatility of KOSPI 200. Accurate volatility prediction is an important aspect of risk management, 

especially when allocating assets to various portfolios to effectively hedge the risks of these portfolios. It 

has been shown that a low level of financial management expertise, a large amount of financial assets, and 

a high time opportunity cost could increase the perceived value of information intermediaries, thereby 

raising the possibility of using information intermediaries. We have also found that the use of information 

intermediaries is positively correlated with the overall scope of information search and affects the likelihood 

of using other sources of information. In section 2, we explain the generalized autoregressive conditional 

heteroskedasticity (GARCH) financial time series model and the hybrid long short-term memory (LSTM) 

model involving the artificial neural network (ANN) and multiple GARCH models. We explain how the 

experiment is conducted and present the experimental results and analysis in sections 3 and 4, respectively. 

Section 5 provides several conclusions to this study and the forecast of future research. 

 

2. Literature review 

The volatility of asset market, like the stock market, is a measurement of the degree to which asset prices 

fluctuate and the degree of uncertainty in forecasting. Investment firms and private investors measure the 

instabilities of underlying asset prices [1]. In order to determine the risk of investment profile, it is essential 

to determine the volatility of constituent assets. Volatility is significant not only to evaluate such intangible 

derivative goods as stock index options but also in price detection. In such cases, volatility is a deductive 
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topic within different types of financial time series models. In order to deduce the future trends with the 

heteroscedastic condition of past information, an autoregressive conditional heteroskedasticity (ARCH) 

model that uses the present error term as a function of the previous time has been proposed [2]. By using the 

proposed GARCH model, it is feasible to reduce the estimated number of parameters [3]. When the volatility 

is high, a high volatile state is more likely to maintain to some extent, but when the volatility is low, a low 

volatility state is maintained up to a certain threshold. In addition, Morgan and Reuters have put forward 

the exponentially weighted moving average (EWMA) model based on GARCH(1,1) [4]. The former 

emphasizes recent data more than other models. It clearly forecasts recent changes and is less influenced 

by the quantity of data. A number of scholars have used time series [5-7] and deep learning models [8,9] to 

estimate stock prices and stock return movements. 

These econometric methods are theoretically described based on statistical charts and data. However, 

if qualitative variables are used, the stability of model-based predictions will be significantly reduced. In 

order to avoid restrictions and assumptions on the model, ANN, which is more stable and connected, is 

considered. The comparison of the two models shows that the density estimation neural network without 

specific target distribution has better performance than the multi-layer perceptron. Therefore, in volatility 

prediction, the nonlinear characteristics that cannot be captured by econometric models can be clearly 

extracted using the neural network-based method, which has been proven to be successful. Therefore, the 

LSTM model can be used by the recurrent neural network (RNN) to forecast exchange rates and foreign 

exchange. LSTM is obviously superior to the feedforward neural network model as a functioning financial 

time model. This paper studies the model combining neural network with econometric model and the single 

neural network model for forecasting volatility. By taking into account of these characteristics and 

analyzing the volatility of S&P 500 index futures options, it has been found that ANN can surpass the 

financial time series model [10]. By forecasting the volatility of financial time series, the feasibility of using 

ANN has been proven [11]. 

 

3. Materials and methods 

3.1. Data 

This study takes the volatility of KOSPI 200 index in South Korea as the research subject, tracking the 

market value of 200 stocks represented by South Korea as the fundamental analysis target. The data is 

derived from the Data Guide and consists of 4922 data points from January 1, 2000, to August 30, 2020. It 

is estimated that there will be 3315 data points during this process. The interest rate of three-year Korean 

Treasury Bond (KTB) and three-year AA corporate bond (CB) is based on the daily data provided by the 

Korean Asset Management Corporation. The daily closing prices of gold and crude oil are derived from 

Bloomberg during the same period. We integrate the hybrid GARCH-exponential (E)GARCH-EWMA 

model and the hybrid GARCH-EGARCH model into the LSTM model, respectively, and compare the error 

and volatility between them to determine which of those two is a better model. 

 

3.2. Financial time series models 

3.2.1. Generalized autoregressive conditional heteroscedasticity (1,1) model 

In order to understand the GARCH model, we must first look at the ARCH model. The ARCH model plays 

a significant role in predicting risks in the short-term period and aims to identify economic variables that 

can be used to predict volatility. It is assumed that the conditional variance is constant, and the estimator is 

unbiased; however, it cannot be used for valid estimation. Therefore, it cannot be used to acquire the settings 

of the confidence interval and commonly used tests. In 1982, Engle proposed the ARCH(p) model, which 

is a conditional heteroscedasticity model, to model the volatility of the conditional distribution. The ARCH 

model is as follows: 
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𝑦𝑡 = 𝜇𝑡 + 𝜎𝑡𝜂𝑡, 𝜂𝑡  ~ 𝛮 (0,1) 

 

𝜀𝑡 = 𝜎𝑡𝜂𝑡, 𝜀𝑡|𝜒𝑡−1  ~ 𝛮(0, 𝜎𝑡
2) 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞
2  

 

Equation (1) comprises 𝜇𝑡, which can be predicted by the average equation for the 𝑦𝑡 time series, and 

the unpredictable error term 𝜀𝑡. Equation (2) states that the error 𝜀𝑡 follows a normal distribution when 

time (t–1) is known. Equation (3) states that the conditional variance depends on the past square of the 

errors.  

ARCH is circumscribed because it cannot avoid too many parameters when the p-value is too large nor 

explain the leverage effect on financial time series. In 1986, Bollerslev established the GARCH model. The 

GARCH(p, q) model is as follows: 

 

𝑦𝑡 = 𝜇𝑡 + 𝜎𝑡𝜂𝑡, 𝜂𝑡  ~ 𝛮 (0,1) 

 

𝜀𝑡 = 𝜎𝑡𝜂𝑡, 𝜀𝑡|𝜒𝑡−1  ~ 𝛮(0, 𝜎𝑡
2) 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 + ⋯ + 𝛽𝑝𝜎𝑡−𝑝
2  

 

The GARCH model is the extension of the ARCH model. The first two equations of the GARCH model 

are as the same as those in the ARCH model. Equation (6), however, indicates the square of residuals and 

conditional variance in the GARCH model. This equation is significant, as it has helped to solve the problem 

of excessive parameters when the p-value is too large.  

When p = 1 and q = 1, the GARCH(1,1) model is as follows: 

 

𝛼𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

 

We can then infer the following: 

 

𝜎𝑡
2 =

𝛼0

(1 − 𝛽1)
+ 𝛼1 ∑ 𝛽1

𝑗−1

∞

𝑗=1

𝜀𝑡−𝑗
2  

 

The GARCH model enhances the ARCH model so that there will be less parameters; thus, it will be 

easier to calculate. It predicts the volatility of the current period of KOSPI 200 index returns from the past, 

but it still has its limits. It has to satisfy the condition that every coefficient must be nonnegative. In addition, 

it cannot measure the leverage effect in financial pricing. However, the EGARCH model can explain the 

leverage effect on financial series. 

 

3.2.2. Exponential generalized autoregressive conditional heteroscedasticity model 

The EGARCH model, which was innovated by Nelson in 1991, considers the influence of the leverage 

effect on financial series. More importantly, it does not have to satisfy the condition in the GARCH model 

that “every coefficient must be nonnegative” because this model also defines the logarithm of conditional 

variance. Unlike the ARCH and GARCH models, the EGARCH model cannot solve the problems of 

negative future volatility. The EGARCH model is as follows: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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𝑟𝑡 = 𝑋𝑡𝑀 + 𝜀𝑡  

 

𝑙𝑛𝜎𝑡
2 = 𝛼0

′ + 𝛽𝑙𝑛𝜎𝑡−1
2 + 𝜔 (

𝜀𝑡−1

𝜎𝑡−1
) + 𝛾 |

𝜀𝑡−1

𝜎𝑡−1
| 

 

In equation (9), 𝑋𝑡  is the explanatory variable, M is the parameter, and 𝜀𝑡  is the residual term. 

Equation (10) states the logarithm of conditional variance. This model assumes the conditional variance is 

positive even if the parameters are negative.  

 

3.2.3. Exponentially weighted moving average model 

The EWMA model is a model that can reduce the influence of actual data in the past. The model is as 

follows: 

 

𝜎𝑡
2 = 𝜌𝜎𝑡−1

2 + (1 − 𝜌)𝜀𝑡−1
2    (0 < 𝜌 < 1) 

 

In equation (11), we can see that the variable ρ has significant influence on the autoregressive moving 

average (ARMA) model. When ρ is infinitely close to one, there will be almost no influence from past 

information. This is not significant because it will only reflect recent information. However, if ρ is too small, 

there will be excessive past information and the residual term will be large. Hence, it will be better if ρ is 

large and not too close to 1. In that way, the accuracy is higher, and the data in the past would not be avoided.   

 

3.2.4. Long short-term memory  

LSTM is a type of recurrent neural network. Traditional RNNs use backpropagation through time. Hence, 

over a long period of time, the residual term will decrease exponentially; thus, the long-term memory effect 

of RNNs will not be reflected. In view of that, Hochreiter and Schmidhuber proposed LSTMs that can store 

memories and catch necessary information, while ignoring unnecessary information. 

 

𝑔𝑡 = 𝜎(𝑈𝑔𝑥𝑡 + 𝑊𝑔ℎ𝑡−1 + 𝑏𝑓) 

 

𝑖𝑡 = 𝜎(𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) 

 

𝑐�̃� = tanh (𝑈𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐) 

 

𝑐𝑡 = 𝑔𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃� 

 

𝑜𝑡 = 𝜎(𝑈𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡) 

 

LSTM consists of memory blocks. As shown in Figure 1, LSTM includes a memory cell and three 

gates: an input gate (it), a forget gate (gt), and an output gate(ot). Equation (13) is an input gate equation. 

When the sigmoid function is 0, there is no input getting through the gate; when it is 1, all information will 

pass through the gate. Equation (12) demonstrates the weighted average of xt and ht-1, which will be too 

large if the input gate is 1. When the input value is large, the gradient of tanh and sigmoid function will 

basically disappear. Hence, a forget gate is added to eliminate the information in memory. The main 

innovation of LSTM is its storage unit ct, which essentially acts as the accumulator of state information. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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The unit is accessed, written, and cleared by several self-parameterized control gates. Whenever a new 

input arrives, if the input gate 𝑖𝑡 is activated during t, its information will be accumulated into the unit. In 

addition, if the forget gate is on, then the past cell status ct-1 may be “forgotten” in the process. When the 

latest unit outputs 𝑐𝑡, it will be propagated to the final state ℎ𝑡, and further controlled through the output 

gate 𝑜𝑡. One advantage of using memory cells and gates to control the information flow is that the gradient 

will be captured in the cell (also known as the constant error turntable) and prevented from disappearing 

too quickly, which is a key problem of ordinary RNN models. 

 

 
Figure 1. Process of long short-term memory 

 

3.3. Measurement and statistical test 

3.3.1. Realized volatility 

Realized volatility is also historical volatility. Realized volatility measures the volatility of stock prices in 

one day. Realized volatility at time t is calculated as follows: 

 

𝑅𝑉𝑡 = √
1

𝜌𝑡
∑(𝑆𝑡 − 𝑆�̅�

𝜌𝑡

𝑡=1

)2 

 

In equation (18), 𝜌𝑡 is the days remaining after t, 𝑠𝑡 is the logarithmic return at time t, and 𝑠𝑡 is the 

average return of the log return at time t days, during the time period of 𝜌𝑡 after time t.  

  

3.3.2. Loss functions 

There are four types of loss functions. Mean absolute error (MAE) is the mean of all absolute values of all 

errors and is unaffected by outliers. Mean square error (MSE) is the average of the square of the difference 

between the real value and the predicted value. These two are basic, and the equations of MAE and MSE 

are as follows: 

𝑀𝐴𝐸 =
1

𝑇
∑|𝑣�̂� − 𝑅𝑉𝑡| 

 

𝑀𝑆𝐸 =
1

𝑇
∑(𝑣�̂� − 𝑅𝑉𝑡)2 

 

(18) 

(19) 

(20) 
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Heteroskedasticity adjusted MAE (HMAE) and heteroskedasticity adjusted MSE (HMSE) are forms 

of MAE and MSE adjusted through heteroscedasticity, respectively. They are non-linear loss measurements. 

The functions of HMAE and HMSE are as follows: 

 

𝐻𝑀𝐴𝐸 =
1

𝑇
∑|1 − 𝑣�̂�/𝑅𝑉𝑡| 

 

𝐻𝑀𝐴𝐸 =
1

𝑇
∑(1 − 𝑣�̂�/𝑅𝑉𝑡)2 

 

𝑣�̂� is the predicted volatility at time t, R𝑉𝑡 is the realized volatility at time t, and T is of population 

predictions.  

 

4. Experiment 

The steps of our experiment are as follows: first, the hybrid model consisting of three models (GARCH, 

EGARCH, and EWMA) integrated into LSTM is analyzed to predict volatility; second, the hybrid model 

of GARCH-EGARCH integrated into LSTM is used. These two models help us to compare and predict 

volatility. There are four types of errors that are crucial, including MAE, MSE, HMAE, and HMSE. In the 

experiment, we also use the Durbin Watson (DW) and Wehner Schulze (WS) tests, whose purpose is to 

ensure a more accurate prediction.  

In total, there are 4922 KOSPI 200 index data points between January 5, 2000, and August 21,2020 in 

the following three parameters: GARCH, EGARCH, and EWMA. The actual train size is 3315, which is 

taken from this range. We measure the number of classes, number of layers, input size, and hidden sizes, 

all of which can influence the LSTM model. The train size and the data of predicts affect the errors, 

including MAE, MSE, HMAE, and HMSE. By identifying the specific errors and learning about the ability 

of this model, we can predict the time series. 

 

5. Results and discussion 

Figure 2 illustrates the fact that the larger the epochs, the lower the loss. The data in Table 1 correspond 

to Figure 2. We can reach a conclusion that when the loss is 0.00376, the epoch set is approximately 180, 

suggesting that when we have a larger epoch set, the loss will be nearer to 0. 

 

 
Figure 2. Relationship between epochs and loss in the hybrid model of GARCH, EGARCH, and EWMA integrated into LSTM 

 

(21) 

(22) 
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Table 1. Errors of the hybrid model of GARCH, EGARCH, and EWMA integrated into LSTM 

Epoch Loss 

0 0.14644 

20 0.00779 

40 0.00517 

60 0.00390 

80 0.00381 

100 0.00379 

120 0.00378 

140 0.00377 

160 0.00377 

180 0.00376 

 

Figure 3 shows the volatility predicted by the hybrid model. This hybrid model consists of GARCH, 

EGARCH, and EWMA integrated into LSTM. The x-axis and y-axis represent the total days and the 

realized volatility, respectively; the orange and blue lines represent the training volatility and the time series 

of realized volatility, respectively. When the days increase, the training volatility is nearer to the time series 

of volatility. 

 

 
Figure 3. Volatility of the hybrid model consisting of GARCH, EGARCH, and EWMA integrated into LSTM 

 

We use four different kinds of loss functions, including MAE, MSE, HMAE, and HMSE. From Tables 

2 and 3, we can clearly see that the hybrid model of GARCH, EGARCH, and EWMA integrated into LSTM 

has a larger error compared to the hybrid model of GARCH and EGARCH integrated into LSTM. The 

overall MAE, MSE, HMAE, and HMSE of the former are 33.71%, 28.03%, 26.05%, and 14.47%, 

respectively. The latter model is better because its overall MAE, MSE, HMAE, and HMSE are 33.12%, 

27.34%, 25.58%, and 14.06%, respectively. Additionally, both the test volatility and the train volatility of 

MAE, MSE, HMAE, and HMSE in the latter model are better compared to the former. Tables 2 and 4 are 
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summary tables. Evidently, the latter model has less error in every single term (overall, train, and test) and 

better performance in terms of accuracy. Hence, we can reach the conclusion that the hybrid model of 

GARCH and EGARCH integrated into LSTM is a better model that has less errors, suggesting that it has a 

better capability in predicting time series.  

 

Table 2. Errors of the hybrid model of GARCH, EGARCH, and EWMA integrated into LSTM 

 GARCH + EGARCH + EWMA + LSTM 

Error type Test Train Overall 

MAE 0.25172916 0.37858 0.33706298 

MSE 0.18135291 0.32844272 0.28030145 

HMAE 0.24960087 0.26586163 0.2605397 

HMSE 0.13646944 0.14871801 0.14470914 

 

Table 3. Errors of the hybrid model of GARCH and EGARCH integrated into LSTM 

Epoch Loss 

0 0.05432 

20 0.00855 

40 0.00468 

60 0.00381 

80 0.00379 

100 0.00378 

120 0.00378 

140 0.00377 

160 0.00376 

180 0.00376 

 

Table 4. Errors of the hybrid model of GARCH and EGARCH integrated into LSTM 

 GARCH + EGARCH + LSTM 

Error type Test Train Overall 

MAE 0.24651265 0.37245804 0.33123732 

MSE 0.17731652 0.3201486 0.27340057 

HMAE 0.246911 0.26009637 0.2557806 

HMSE 0.13532783 0.14317173 0.14060462 

 

Figures 3 and 4 correspond to Tables 1 and 3, respectively. The former represents the hybrid model 

of GARCH, EGARCH, and EWMA integrated into LSTM, while the latter represents the hybrid model of 

GARCH and EGARCH integrated into LSTM. Comparing Table 1 with Table 3, the similarity is that when 

epochs increase, loss decreases. This shows that increasing epochs will reduce the errors, thus making it 

more accurate. As shown in Tables 1 and 3, loss decreases from 0.14644 to 0.00376 when epochs increase 

from 0 to 180 in the former model, whereas in the latter model, loss decreases from 0.05432 to 0.00370 

when epochs increase from 0 to 180. Based on these data, it is evident that the loss of the latter model is 

less than in the former model. Therefore, there is less error in the hybrid model of GARCH and EGARCH 

integrated into LSTM.  
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Figure 4. Inverse of the time series prediction 

 

 

 
Figure 5. Relationship between epochs and loss in the hybrid model of GARCH and EGARCH integrated into LSTM 

 

6. Conclusion 

By comparing several composite models at different stages, it can be concluded that the hybrid model of 

GARCH and EGARCH integrated into LSTM is a better model with smaller error as it has better time series 

prediction ability. With this model, investors will be able to make rational investments based on their actual 

ability and risk preference, reduce risk as much as possible while ensuring a certain return, and obtain the 

highest return at the same risk level within the observation range of LSTM model portfolio. 

It should be noted that not all securities portfolios are situated on the effective boundary and the risk 

and return are not always positively correlated as well. There are some differences under the target 

prediction and actual boundary. Therefore, investors must be prudent and use scientific concepts when 

choosing securities, judging investment proportion, and analyzing the market environment. In addition, 

they should avoid blindly pursuing returns, while neglecting the existence of risks. Due to the limitations 

of this model, this theory should not be applied blindly to investment decisions. While giving full play to 

investment diversification, investors should make appropriate corrections and adjustments according to the 

actual situation to avoid unnecessary investment losses. 
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