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Abstract: Malignant tumors are one of the serious 
public health problems that threaten the survival 
time of human beings. They are prone to metastasis 
to distant organs and the central nervous system is 
one of the common target organs. As it is difficult 
for chemotherapeutics, targeted drugs and other 
macromolecules to pass through the blood brain 
barrier (BBB), local radiation therapy is often used 
for treating intracranial primary or metastatic tumors. 
However, whether it is whole brain radiation therapy 
(WBRT) or stereotactic body radiation therapy 
(SBRT), the choice of radiation dose is limited by the 
side effects of radiation therapy on the surrounding 
normal brain tissues. Radiation-induced brain injury 
(RBI) can further develop into radiation necrosis 
(RN) in the late stage. Bevacizumab is often effective 
against RBI by antagonizing vascular endothelial 
growth factor (VEGF), but it still cannot completely 
reverse RN. Emerging treatment options such as 
human pluripotent stem-cell transplantation have 
made it possible to reverse the process of RN.
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Currently, a variety of radiotherapy modalities have 
been applied to the treatment of nasopharyngeal 
carcinoma, high-grade intracranial primary tumors 
(such as glioma) or metastases, as well as the 
treatment of epilepsy and refractory pain[1]. It 

is considered to be the most effective treatment 
besides surgical procedures. Although radiotherapy 
can significantly improve the symptoms of the 
central nervous system, it inevitably leads to the 
occurrence of radiation-induced brain injury (RBI) 
as the irradiation area covers part of the normal 
brain tissue, which not only results in tissue and 
organ dysfunctions, but also limits the dose selection 
of radiotherapy[2]. There are different opinions on 
the exact pathogenesis of radiation-induced brain 
injury. This paper will comprehensively describe the 
pathological mechanism, clinical manifestations, and 
latest progress in the diagnosis and treatment of RBI.

1  Pathogenesis

The occurrence of RBI is the result of multiple 
factors. The exact pathogenesis of RBI is still 
inconclusive. The following pathogenic mechanisms 
are widely recognized.
1.1  Vascular Injuries
A large number of previous experiments have studied 
the histological characteristics of microcirculation 
damage caused by radia t ion ,  inc luding the 
destruction of endothelial cells, the loss of tight 
junctions between cells, the formation of thrombus 
in microvessels, and the decrease in blood vessel 
density[3-6]. The most important factor leading to 
these pathological changes is the pathological up-
regulation of vascular endothelial growth factor 
(VEGF), resulting in the increase of the blood 
brain barrier (BBB) permeability, microcirculation 
disorders, and brain edema. It is also positively 
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correlated to the dose of radiotherapy. If it is not 
intervened in time, the late stage may cause brain 
parenchymal necrosis due to cerebral ischemia and 
hypoxia[7]. Nordal et al.[8] studied the mechanism of 
radiation damage to the central nervous system by 
constructing a rat radiation spinal cord injury model. 
The study believes that poor recovery of central 
nervous system symptoms (such as cerebral edema, 
cerebral hypoxia, paralysis, etc.) after radiotherapy 
is not caused by a single factor of VEGF. Astrocyte 
activation, VEGF, hypoxia-inducible factor-1 
(Hypoxia-inducible factor-1, HIF-1) overexpression 
and other pathological characteristics altogether lead 
to central nervous system damage in the rats after 
radiotherapy. And the immunofluorescence double 
staining method further confirmed the interactions 
between the three, that is, activated astrocytes 
secreted HIF and VEGF in the hypoxic area of the 
brain after irradiation. By comparing VEGF wild-type 
mice and VEGF transgenic mice, Zhou et al[9]. proved 
that even without radiotherapy, the increase in BBB 
permeability and the angiopoietin-2 (angiopoietin-2, 
The high expression of Ang-2) and the low expression 
of cytoplasmic tight junction protein-1 (zonula 
occludens-1, Zo-1) can still be observed in the latter. 
As Ang-2 and Zo-1 are considered to be involved in 
maintaining the integrity of the BBB, it was thought 
that VEGF overexpression is an independent factor 
leading to microcirculation disorders. Nonoguchi et 
al[10]. believed that the secretion of VEGF by activated 
astrocytes is not only limited to the acute phase of 
RBI, but it is also a common cause of late radiation 
necrosis (RN) and peripheral angiogenesis.
1.2  Glial cell damage
Astrocytes, microglia, and oligodendrocytes are 
the most common glial cells in the central nervous 
system. They are all sensitive to radiation. The 
activation of glial cells can be observed as early as 
the acute phase of RBI, and it occurs throughout all 
stages of RBI. The podocytes of astrocytes participate 
in the formation of BBB. The direct damage of 
radiation to astrocytes further destroys BBB, and at 
the same time promotes its secretion of HIF-1, VEGF 
and other cytokines to further aggravate brain edema 
after radiation, causing brain parenchymal hypoxia 
and exacerbates the damages[11-13]. Microglias are the 
main immune defense cells of the central nervous 
system and they are involved in the maintenance 

of homeostasis. They have also been shown to be 
the main cells of the neuroinflammatory response 
after radiation[14-16]. Xu et al.[17] irradiated microglias 
in vitro and found that nuclear factor-KBm (NF-
KB) signal transduction pathway can be observed 
after 3 hours of irradiation to stimulate microglia to 
secrete multiple inflammatory cytokines, and it was 
dose-dependent. The demyelination of white matter 
oligodendrocytes is an important cause of long-
term cognitive dysfunctions, emotional disorders 
and memory loss[18, 19]. Many studies have confirmed 
that the damage of hippocampal neurons can cause 
varying degrees of loss in spatial memory and 
learning ability[20, 21], even fractional irradiation can 
still cause the hippocampus-dependent cognitive 
function to decrease, but it can reduce the activation 
level of microglia[22, 23].
1.3  Neuroinflammatory Response
Animal studies and clinical trials have shown that 
neuroinflammatory response is a non-specific 
response of the central nervous system to injuries, 
and it also plays an important role in RBI. Sharp et 
al.[24] believed that the migration and infiltration of 
inflammatory cells in the non-irradiated area is an 
important contributor to RBI in the irradiated area. 
A single exposure in vivo or in vitro can cause an 
increase in multiple inflammatory factors[25]. Michael 
et al.[11] further studied the relationship between the 
inflammatory response of the central nervous system 
and the radiation dose-time. The brain of C57BL/6 
mice was irradiated with a dose greater than 15Gy, 
and the up-regulation of transcription levels of 
multiple inflammatory cytokines such as interleukin-1 
(IL-1), interleukin-6 (IL-6), tumor necrosis factor-A 
(TNFA) and transforming growth factor B (TGFB), 
and the acute infiltration of neutrophils were observed 
after 4 hours, indicating that there are two-way or 
multiple inflammatory reactions in the central nervous 
system during the acute phase of RBI. The study 
also detected the accumulation of CD-11-positive T 
lymphocytes in the white matter of the brain during 
the delayed RBI period (after 1 month of irradiation).  

2  Clinical Manifestations

According to different clinical manifestations, RBI 
can be divided into three stages: acute, delayed and 
late[26, 27]. The acute phase and the early delayed 
phase are mainly demyelinating diseases such as 
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lethargy, drowsiness, and symptoms of intracranial 
hypertension induced by cerebral edema, such 
as dizziness and headache. In severe cases, brain 
herniation may occur. Most of the lesions are 
reversible, and the symptoms can relieve by them-
selves[28]. Different from the acute phase and the 
delayed phase, late RBI mainly manifests as radiation 
necrosis (RN) caused by local or diffuse neuronal 
necrosis, mild to moderate cognitive dysfunctions, 
emotional disorders and memory loss. Both stages 
develop progressively and are irreversible. They 
are more pronounced in patients with extensive 
hippocampal damage, which severely affects the 
patient's recovery and quality of life[29-33]. 

3  Progress in Treatment

Traditional treatment methods include surgical 
treatment, dehydrating agents (mannitol), anticoa-
gulants, steroid hormones, neuroprotective agents, 
and traditional Chinese medicine, etc., which have 
certain alleviating effects on acute RBI, but the 
efficacies are quite low. VEGF monoclonal antibody 
(bevacizumab) and emerging treatment options 
such as virizumab and human pluripotent stem cell 
transplantation have made it possible to reverse the 
RN process[10, 34-38]. It should be pointed out that 
the new quinolone antibiotic EHQA can reduce the 
activation level of IL-7 due to its anti-inflammatory 
and immunomodulatory effects. Its therapeutic effects 
on RBI remain to be further studied[39].
3.1  Anti-VEGF Treatment
Thrombosis and increased permeability in the 
microcirculation induced by overexpression of VEGF 
are important factors leading to cerebral edema in the 
acute phase of RBI. The specific receptor of VEGF is 
vascular endothelial growth factor receptor (VEGFR), 
which has three subtypes of VEGFR1, VEGFR2, and 
VEGFR3. VEGF mainly combines with VEGFR2 to 
exert its physiological effects[40]. Bevacizumab is a 
recombinant monoclonal antibody. Due to its highly 
antagonistic properties on VEGF, it can block the 
phosphorylation after the combination of VEGF and 
VEGFR and inhibit signal transduction. It has been 
widely used in treatment to relieve cerebral edema 
in the acute phase of RBI[41, 42]. A large number of 
in vivo and in vitro experiments have proved that 
the efficacy of bevacizumab for RBI is not limited 
to improving acute cerebral edema, but it also 

has considerable efficacy for advanced RN[31, 43]. 
Yonezawa et al.[44] used magnetic resonance imaging 
(MRI) and 11C-methionine positron emission 
tomography (MET-PET) to evaluate the clinical 
imaging changes and morphological changes of 
the application of bevacizumab in the treatment of 
advanced radiation brain necrosis. The reduction of 
lesion/normal tissue ratio (lesion/normal, L/N) after 
applying bevacizumab can be observed in all patients 
with RN confirmed by imaging studies. It can be seen 
from the above that the imaging evaluation of the 
microcirculation after radiation is being increasingly 
recognized as the most critical factor in predicting 
the recovery of the RBI acute phase.[45] Bevacizumab 
used in the treatment of RBI can not only repair BBB, 
reduce microvascular permeability, and improve 
the microvascular environment, but also inhibit 
immune response and inflammation. Emerging anti-
angiogenic drugs are being released one after another, 
and whether they can relieve cerebral edema in the 
acute stage of RBI remains to be further explored.
3.2  Hyperbaric Oxygen Therapy
Currently, the most effective auxiliary modality for 
the treatment of acute RBI is hyperbaric oxygen 
treatment (HBOT), which improves the permeability 
of the microcirculation and relieves cerebral edema in 
the acute phase of RBI[46]. Synchronous combination 
of HBOT with drug therapy such as anticoagulant 
drugs, hormones, and vitamin E, etc., is also a widely 
used treatment method. As hormones reduce cerebral 
edema, they are often combined with HBOT, but the 
effects are not satisfactory[10, 47-49]. In summary, HBOT 
can improve the symptoms of RBI, but it still requires 
combination with drugs and is only recommended as 
an adjuvant therapy in the recovery period.
3.3  Stem-cell Transplantation Treatment
Stem cell transplantation therapy is currently an 
emerging field in the treatment of RBI. Previous 
experiments have found that when the tissue is 
damaged, stem cells can migrate to the damaged 
site, differentiate and repair the damaged tissue[50]. 
Depletion of neural stem cells and progenitor 
cells can inhibit neurogenesis, induce neuroinf-
lammation, and cause serious consequences such 
as damage to neuronal structure[51-54]. Stem cell 
transplantation has benefited mice with cognitive 
impairment after radiotherapy and improved their 
neurodegeneration[55-59], but there is no unified 
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standard for the transplantation time window, 
resulting in different treatment effects. Through 
animal experiments, Acharya et al.[60] reported the 
beneficial effects of transplanting induced pluripotent 
stem cell-derived (iPSC-derived) human neural stem 
cells (hNSCs) into the brain of irradiated mice on 
cognitive functions. Experimental data shows that 
transplantation during the delay time after the initial 
injury is the most beneficial. The best transplantation 
time window is 1 month after injury. It also helps to 
reduce the host’s brain graft rejection. Standardizing 
the transplantation time window and improving 
efficiency are still worthy of further study.
3.4  Nursing Care for Neurological Disorders
In clinical work, due to the long course of craniocere-
bral radiotherapy, patients will most likely experience 
the transition from acute to delayed or late stage of 
RBI, develop symptoms of intracranial hypertension 
caused by cerebral edema (such as vomiting, head-
ache, optic nerve head edema and even brain 
herniation), changes in personality and cognition, 
and even brain necrosis. Due to the complex and 
changeable symptoms and a long time span, it is 
necessary for nursing staff to strengthen the care for 
the patient’s consciousness, blood pressure, heart 
rate, and respiratory rate, pay attention to the patient's 
24-hour fluid intake and output during the treatment 
process using mannitol and other dehydrating agents, 
and closely monitor the patient's urine properties 
to avoid urinary adverse events. Once there is an 
abnormal increase in blood creatinine, stop in time. 
Steroid hormones are one of the important treatment 
modalities to fight neuroinflammation in the delayed 
phase of RBI. As they can easily lead to an increase 
in blood sugar, they should be used with caution 
in patients with diabetes. For patients who have 
suffered from peptic ulcers in the past, we should pay 
close attention to the presence of black stools and 
bloody stools, which should be sent for regular stool 
examinations in time to avoid hypovolemic shock due 
to blood loss. As targeted drugs such as bevacizumab 
have partial cardiotoxicity, one-person-one-monitor 
policy should be strictly implemented during use. 
Meanwhile, pay attention to the management of 
skin and mucous membrane during radiotherapy 
by administrating appropriate combination of 
radiation protection agents to avoid skin and 
mucous membrane ulceration caused by the adverse 

reactions of radiotherapy. Pay attention to changes 
in the patient's blood routine. If there is a significant 
decrease in platelets, raise the level of care in time 
to prevent patient falling from bed. Do good jobs in 
patient psychological care, enhance communication, 
and assist patients in successfully completing the 
treatment process.

4  Conclusion

Microcirculation disorders, intravascular thrombosis, 
increased permeability of the blood-brain barrier, 
long-term cognitive dysfunctions, and radiation 
brain necrosis after radiotherapy are important 
factors leading to poor prognosis of RBI. Due to its 
toxic side effects that cannot be ignored, it is very 
crucial to seek effective prevention and treatment 
measures. Although the mechanism of RBI has not 
been accurately explained, it cannot be summed up 
by monism alone. It is the result of the interactions of 
multiple processes. Meanwhile, individual differences 
between patients, previous diagnosis and treatment 
processes are also factors that cannot be ignored. 
In general, the prevention of RBI is better than the 
treatment of RBI. At the same time, personalized 
treatment schemes should be developed for different 
patients.
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