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Abstract: As modern weapons and equipment undergo increasing levels of informatization, intelligence, and networking, 
the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively 
complex. In this paper, we employ a traffic matrix to model the tactical data link network. We propose a method that 
utilizes the Maximum Variance Unfolding (MVU) algorithm to conduct nonlinear dimensionality reduction analysis on 
high-dimensional open network traffic matrix datasets. This approach introduces novel ideas and methods for future 
applications, including traffic prediction and anomaly analysis in real battlefield network environments.
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1. Introduction
Since the Gulf War, the nature of warfare has transitioned from traditional large-scale mechanized conflicts to 
localized warfare under high-tech conditions. With the rapid advancement of technologies such as computers, 
network information, and artificial intelligence, modern warfare has become increasingly informatized, 
networked, and intelligent. The shift in the form of modern warfare from platform-centered to network-
centered is a significant change. Unlike platform-centered warfare focused on weapon platforms, network-
centered warfare is a networked and information-based integrated form centered on the network. It stands as 
the fundamental and crucial combat style for local wars under information technology conditions, integrating 
intelligence, command, communication, computers, electronic warfare, information warfare, combat support, 
and firepower strikes. This approach constructs a network-centric battlefield environment, connecting various 
combat units, weapon platforms, and information systems in the battlefield through the network. It achieves 
continuous improvement in intelligence sharing, enhances battlefield situational awareness, accelerates combat 
decision-making and commanding, and accomplishes almost real-time combat coordination for tactical 
purposes. The data link network facilitates space-time cooperative operations among various combat units in 
systematic and integrative warfare and serves as the infrastructure for constructing a network-centric battlefield 
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environment. It also acts as the neural center of the network-centric warfare system. 
With the rapid development of military science and technology, the level of informatization and intelligence 

of modern weapons and equipment is rapidly advancing. The number and types of equipment that can be 
connected to the tactical data link network will increase exponentially, leading to a more complex topology and 
data traffic characteristics of the network. Data link network traffic acts as the carrier of information, flowing 
like the “blood” in the large-scale and complex battlefield network environment. In the face of this increasingly 
complex network environment, understanding how to process and analyze battlefield network communication 
traffic data, extract traffic characteristics, perceive the network situation, detect anomalies, and predict network 
traffic is a crucial prerequisite for building a more robust and real-time battlefield network. 

Currently, most analyses and research on network traffic data are primarily conducted on a single link in 
isolation [1-5]. However, the emergence of the traffic matrix provides an opportunity to analyze network traffic 
data characteristics from the perspective of the entire network [6]. Research revealed that data traffic on different 
links in a network is not independent; instead, it often exhibits similar traffic characteristics [6]. Lakhina et al. 
employed a linear analysis method based on the Principal Component Analysis (PCA) algorithm [7]. As the 
complexity of the network structure increases, data traffic may exhibit more complex nonlinear characteristics. 
Therefore, this article utilizes a nonlinear dimensionality reduction algorithm to conduct dimensionality 
reduction analysis of complex battlefield networks, providing a new idea and method for network situation 
awareness and data analysis in future systematic operations involving complex battlefield networks.

2. Basic theory
This section primarily introduces the mathematical theory related to manifold learning.

(1) Topology: Let τ be a subset family of the non-empty set X. If τ satisfies the following constraints:
•　X, ∅ ∈ τ;
•　if A,B ∈ τ, then A∩B ∈ τ;
•　if τ1 ∈ τ, then ∪A∈τ1 A ∈ τ;

then  is called a topology of X.
(2) Topology space: If τ is a topology of the set X, then the pair (X, τ) is called a topological space.
(3) Homeomorphism: Let X and Y be two topological spaces. If f:X→Y is one-to-one mapping, f and 

f –1 :Y→X both are continuous, then f is called homeomorphic mapping or homeomorphism.
(4) Hausdoff space: Let (X, τ) be topology space,  and Uy, s.t. Ux∩Uy=∅, then (X, τ) is a 

Hausdoff space, where Ux and Uy are the neighborhoods of x and y.
(5) Manifold: Let X be a Hausdoff space, ∈ X, there exists an open set neighborhood U which is 

homeomorphic to the Euclidean space , then X is a D-dimensional topological manifold, referred to 
as a D-dimensional manifold.

(6) Manifold learning: For data set X ={x1,x2,…,xN}

∪

, assume that any point in X can be generated by  
Y ={y1,y2,…,yN}

∪

 through a nonlinear mapping. The goals of manifold learning are:
• To get Y ={y1,y2,…,yN}

∪

, which is the low-dimensional coordinates of X;
• To get f –1: → , which is a nonlinear mapping from the high-dimensional input space to the 

low-dimensional output space.
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3. Maximum variance unfolding algorithm
3.1. Brief introduction
Manifold learning assumes that high-dimensional input data are approximately situated on a low-dimensional 
manifold embedded in the high-dimensional space. The global feature preservation method calculates low-
dimensional coordinates by performing eigendecomposition on the similarity inner product matrix, constructed 
from the global similarity matrix, aiming to retain the global geometric features of the output data in the low-
dimensional space. Typically, this algorithm involves three steps: (1) constructing a neighborhood graph 
from the input data; (2) building an inner product matrix based on the global similarity measure matrix; (3) 
conducting eigenvalue decomposition of the inner product matrix to derive the low-dimensional embedding 
coordinates of the input data.

Maximum variance unfolding (MVU) is a manifold learning algorithm proposed under local isometric 
constraints [8-11]. Its fundamental concept is to “expand” non-adjacent data as far apart from each other as 
possible while maintaining the distance between neighboring points on the neighborhood graph unchanged. For 
instance, envision a string of curly necklaces as a one-dimensional manifold embedded in a two-dimensional 
space. Each data point in the high-dimensional space represents a node on the necklace. The MVU idea is akin 
to unfolding the “necklace” in the low-dimensional space, illustrated in Figure 1. Theoretically, the process of 
“unfolding” high-dimensional data using MVU can be formulated as a quadratic programming problem, where 

 which satisfies the following constraints
(1)  where xi and yj are neighbors of each other
(2) ∑i yi = 0
where constraint (1) is a local isometric constraint, ensuring that the Euclidean distance between 

neighboring points remains unchanged after dimensionality reduction, while constraint (2) is used to eliminate 
the centralization constraint of the translational degree of freedom [12,13]. By defining the Gram inner product 
matrix Kij = yiyj, the above non-convex optimization quadratic programming problem can be transformed into a 
convex optimization semidefinite programming (SDP) problem, where maxtr(K) satisfies

(1) , where xi and yj are neighbors of each other
(2) ∑ij Kij = 0
(3) K ≥ 0
where (3) is a positive semi-definite constraint, which ensures that this SDP has the optimal solution. By 

solving this SDP problem, the Gram matrix K can be obtained, and the d-dimensional embedding coordinates 
can be represented by the eigenvectors corresponding to the d largest eigenvalues of K.

Figure 1. (a) The two-dimensional “necklace” data; (b) MVU embedding result from “necklace” data
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3.2. MVU algorithm process
(1) Neighborhood graph construction by using the k-NN method or ε-ball method.
(2) SDP: The objective function is constructed under local isometric constraints and centralization 

constraints, and converted into a SDP problem. Then the SDP problem is solved to obtain the positive 
semi-definite Gram matrix .

(3) Spectral decomposition: Perform eigen-decomposition of the Gram matrix to obtain the low-
dimensional coordinates.

The embedding results of MVU on public data sets are shown in Figure 2.

(a)

(d)(c)

(b)

Figure 2. (a) TwinPeak data set; (b) TwinPeak data set embedding result by MVU; (c) SwissRoll data set; (d) SwissRoll 
data set embedding result by MVU

3.3. Algorithm analysis
MVU is a global manifold learning algorithm based on isometry. If there exists a subset of the Euclidean space 
equidistant from the manifold where the high-dimensional input data is situated, MVU can accurately restore 
the low-dimensionality of the high-dimensional input data. Additionally, because MVU does not require the 
calculation of geodesic distance between input data, it can yield genuine dimensionality reduction results even 
for non-convex data sets. However, the MVU algorithm has notable drawbacks. Firstly, the time complexity 
and space complexity of MVU for solving the SDP problem are both O((kN)3), and the time complexity of 
eigenvalue decomposition of the Gram matrix during the solution of low-dimensional embedded coordinates 
is O(N3). Consequently, the substantial computational complexity significantly hampers the application of the 
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MVU algorithm on large-scale data sets. Secondly, due to the stringent local isometric constraints, the MVU 
algorithm may perform poorly due to “short-circuit edges” resulting from noise data during the construction of 
the neighborhood graph.

4. Dimensionality reduction analysis of tactical network traffic data
4.1. Network traffic matrix modeling 
Let Ω represent the non-empty set of all nodes in the network, with |Ω|=N. The flow matrix can be naturally 
represented by a three-dimensional non-negative hypermatrix X(t), where each element is denoted as Xi,j(t). 
Each element in the traffic matrix signifies the traffic measurement value from the source node i to the 
destination node j within the time period , covering the entire measurement period. Real-time 
measurement of the traffic matrix size is challenging, so the algebraic mean of the traffic at a discrete time 
interval ∆t is typically used as the measurement value for that period. For different combat missions, the time 
interval can be chosen based on the specific circumstances. In a decentralized battlefield network consisting 
of N combat units, the traffic matrix dimension obtained in any observation period is N2. Consequently, the 
dimension of traffic matrix data acquired in one measurement period will be 225 in a network comprising 15 
nodes. Directly analyzing such a high-dimensional traffic matrix poses challenges in terms of computational 
and storage complexity. Therefore, the MVU algorithm is employed for dimensionality reduction on the high-
dimensional network traffic matrix data to facilitate storage and analysis.

In this paper, we utilize public traffic matrix datasets to simulate real battlefield networks, sourced from 
http://www.cs.utexas.edu/~yzhang/research/AbileneTM. This dataset collection spans 6 months of Internet 
traffic matrix data from the Abilene backbone network, comprising a total of 24 data files, with each data 
file containing 2016 traffic matrices. The network consists of 12 PoP points, making each traffic matrix 
144-dimensional, with a sampling interval of 5 minutes and data units measured in bytes.

4.2. Intrinsic dimensionality and residual variance analysis
Determining whether the traffic matrix possesses low-dimensional features is a prerequisite for subsequent 
dimensionality reduction analysis. Lakhina et al. observed that each data flow in the traffic matrix can be expressed 
as the weighted sum of a small number of eigenvalue flows [7]. As depicted in Figure 3, a significant portion of the 
traffic variance is determined by the first few (5 to 10) eigenvalue flows, indicating that the dimensions of these 
high-dimensional traffic matrices are considerably lower than the number of PoP pairs in the network.

Figure 3. Dimensionality analysis on traffic flow data by PCA
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Tenenbaum et al. employed the residual variance method to analyze the intrinsic dimensionality of high-
dimensional input data [12]. We applied MVU to the public traffic data set, and the results of the residual variance 
results are presented in Figure 4. The intrinsic dimensionality can be identified by identifying the “elbow” 
point where the curve ceases to significantly decrease with added dimensions. As demonstrated in Figure 4, the 
“elbow” points of the residual variance curves for all four data sets occur at d = 5, signifying that their intrinsic 
dimensions are much smaller than their original dimensions.

 

Figure 4. Residual variance results of the open traffic datasets by MVU

The low-dimensional nature of the network traffic matrix is attributed to its spatial correlation. The 
network comprises edge networks and core networks, and the traffic of different nodes in the core network may 
originate from the same edge network. This similarity in variation patterns among the different nodes results in 
a more condensed low-dimensional representation of the high-dimensional traffic matrix.

4.3. Low-dimensional structure analysis  
To gain a more intuitive understanding of the low-dimensional structures within the traffic matrix, this section 
delves deeper into the analysis of the MVU three-dimensional embedding results of the traffic matrix data.

For visual clarity, we present the three-dimensional embedding result of datasets X01, X06, X11, and X18 
in Figure 5. These four datasets exhibit diverse structures in the low-dimensional embedding space, illustrating 
relationships among global network-wide traffic during sampling time intervals. The embedding result of 
dataset X11 demonstrates nearly linear characteristics, suggesting a linear variation pattern and features within 
the corresponding network traffic. In the results of datasets X01 and X18, some isolated points are noticeable, 
possibly linked to abnormal situations in the network. Through this analysis, it becomes evident that various 
network traffic matrix datasets showcase distinct structural characteristics in their low-dimensional embedding 
space.

By utilizing manifold learning methods to reduce the dimensionality of high-dimensional traffic matrix 
data and analyze low-dimensional structures, valuable insights can be gleaned. This approach enables the 
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extraction of information such as traffic trends or anomalies, providing a novel method for analyzing internet 
traffic from a network-wide perspective.

Figure 5. MVU embedding result of different traffic datasets

5. Conclusion
In this paper, we applied the MVU algorithm to open datasets to analyze the low-dimensional structure of 
network traffic. The experimental results demonstrate the validity of our approach. However, the MVU 
algorithm still faces challenges due to its high complexity and weak robustness, thereby restricting its 
application to large-scale, noisy datasets. In future work, our emphasis will be on enhancing the computational 
efficiency and robustness of the MVU algorithm.
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