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Abstract: Reviews and experimental verification have found that existing solution methods can be used to solve UAV path 

planning problems, but each approximate solution has its own advantages and disadvantages. For example, ant colony 

algorithm easily falls into the local optimum in the process of realizing path planning. In order to prevent too low pheromones 

on the longer path and too high pheromones in the shorter path, the upper and lower limits of pheromones as well as their 

volatile factors are set to avoid falling into the local optimum. Secondly, multi-heuristic factors are introduced, and the overall 

length of the path serves as an adaptive heuristic function factor that determines the probability of state transition, which 

affects the probability of ants choosing the corresponding path. The experimental results show that the path length planned by 

the improved algorithm is 93.6% of the original algorithm, and the optimal path length variance is only 14.22% of the original 

algorithm. The improved ant colony algorithm shortens the optimal path length and solves the UAV path planning problem in 

terms of local optima. At the same time, multiple enlightening factors are introduced to increase the suitability of UAV for 

complex environments and improve the performance of UAV. 
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1. Introduction 

With the advancement of modern science and technology, the tasks that UAV can perform are continually 

increasing [1]. For example, UAV can undertake the task of transporting emergency materials, such as 

medical rescue kits. In order to better apply UAV to practice, scholars have done a lot of research on UAV 

path planning and have proposed numerous algorithms to increase the efficiency of path planning. The 

algorithms include artificial potential field method [2], A* algorithm [3], ant colony algorithm [4], genetic 

algorithm [5], particle swarm algorithm [6], bat algorithm [7], simulated annealing algorithm [8], fast 

expanding random tree algorithm [9], D* algorithm [10], artificial fish swarm algorithm [11], locust algorithm 
[12], firefly algorithm, and so on [13]. Genetic algorithm uses codes to represent the solution of the problem. 

Following the operation of the codes such as selection, crossover, mutation, and so on, the fitness and 

function values are used as the evolutionary assessment basis, and finally the optimal population, that is the 

solution to the problems [14], is obtained. Ant colony algorithm and genetic algorithm operate similarly 

when selecting the optimal solution. The ant colony algorithm seeks the optimal solution through iteration, 

but it has no crossover and mutation operations when searching for the optimal solution; therefore, the 

solution is simpler.  

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Ant colony algorithm is a heuristic search algorithm, which was proposed by DRIGO in the early 1990s 

by simulating the foraging behavior of ants in the environment [15]. The characteristics of ant colony 

algorithm include positive feedback, parallel computing, good robustness, and so on [16]. Many scholars 

have applied the ant colony algorithm to path planning and have achieved successful results. The ant colony 

algorithm can be used to solve discrete optimization problems since it has a wide search range and a fast 

convergence speed [17]. However, due to the positive feedback characteristics of the algorithm, pheromones 

may accumulate on local paths, thus leading to problems, such as falling into the local optimum [18,19]. The 

ant colony algorithm takes the distance between the current position and the next position as heuristic 

information. When faced with obstacles, there are still several problems in avoiding them in advance [16]. 

Hence, many scholars have been working to improve the flaws in the algorithm. With the deepening of 

research and the characteristics of path planning, the focus is on how to improve the search efficiency of 

the algorithm [20].  

Path smoothing can reduce the flight risk of UAV. Huang and other researchers have introduced the 

degree smoothing method to generate a smooth path [21]. As the distance between the current node and 

several neighboring nodes is equal, inspiration cannot play a role in the selection of the next node, so it has 

been proposed that the shortest distance between the starting point and the target point should be taken as 

the guide for path search [22]; by calculating the reciprocal of the weighted sum of the distance between the 

current node and the next node to be left as well as the vertical distance from the next node to the shortest 

path, the search of the algorithm can be accelerated. Sun Gongwu and others have designed an adaptive 

heuristic function that takes into account the distance between the current grid and the grid to be walked as 

well as the distance between the grid to be walked and the target grid to select better nodes, but the adaptive 

heuristic function only considers the current grid as well as the distance between the grid to be walked and 

the target grid [23]. Based on the concept of multi-scale path search, Huang Xin and others have proposed 

an improved guidance factor, which takes into account the distance from the node to the target point and 

the distance from the node to the starting point; in addition, the flight of the UAV is determined by the 

height of the terrain but only partially considers the guidance function of the heuristic function [24]. In regard 

to path smoothing, Li Li and others have introduced the number of turns into the heuristic function, which 

influenced the improved heuristic function; they also improved the pheromone updating mechanism and 

the path smoothness, providing good convergence and global searching ability; however, the transition 

probability is only affected by pheromone and heuristic function, and the iteration times are large, which 

makes it easy to fall into the local optimum [25].  

Huang and other researchers introduced the K-degree smoothing method to the path smoothing 

problem [21], while Li Li and other researchers did not only consider the smoothing problem in the heuristic 

function, but also the number of turns of the path in the heuristic function [25]. Tao and others improved the 

transition probability to enhance the convergence speed of the algorithm, thus improving the performance 

of the algorithm; however, the obtained path length is not the shortest [22]. An adaptive heuristic function 

has been designed in a study [23] according to the distance between the current grid and the target grid, but 

it only considered the path length, whereas the heuristic function of in the study conducted by Li Li [25] 

considered many heuristic factors. In another study [24], the leading factor of nodes was introduced into the 

transition probability; however, it did not improve the inspiring factor. Li Li and other researchers 

considered the number of turns and the smoothness of the path while making the path as short as possible, 

and they proposed a multi-heuristic ant colony algorithm that takes the distance correction function, safety 

function, and smoothness function into account [25]. When ants look for the best path, the path is chosen 

based on multiple heuristic factors.  

In a study [25], the path factor only considers the distance from each adjacent grid of the current grid to 

the target grid but does not consider the integrity of the path. In this study, under the influence of multiple 
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heuristic factors and considering the integrity of the path, the guiding factor mentioned in the study [24] 

conducted by Huang Xin is introduced into the transition probability, and the heuristic function, pheromone, 

and pheromone volatilization factor are processed to increase the accuracy of the algorithm. The results 

reveal that this method improves the efficiency of path search, reduces the number of iterations, and 

optimizes the path length. 

 

2. Environmental modeling 

In this study, a two-dimensional grid method [26] is used to model the path environment. Taking into account 

the safety of drones, the distance between the drone’s path and the grid obstacles is set to be half of the grid 

length. Each grid has eight adjacent grids [27] that can be walked, as shown in Figure 1. 𝑑𝑖𝑠(𝑖, 𝑗) represents 

the distance from the current grid 𝑖 to its 𝑗-th adjacent grid. 

 

𝑑𝑖𝑠(𝑖, 𝑗) = {
    1,     𝑊ℎ𝑒𝑛 𝑎𝑛𝑡𝑠 𝑔𝑜 2,4,6,8,

√2,   When ants go 1,3,5,7.
              

 

 
Figure 1. Eight adjacent grids, with the middle grid as the current grid 

 

The process of ants selecting the next grid is discussed below.  

(1) Step 1: Determine whether there is an obstacle in grid 1. If there is an obstacle, as shown in Figure 

2, then 𝑑𝑖𝑠(𝑖, 𝑗) = ∞; otherwise, proceed to Step 2. 

 

 
Figure 2. Grid 1 is an obstacle and the distance from the current grid to grid 1 is infinite in this situation 

 

(2) Step 2: Determine whether the adjacent grid 1 is out of bounds; that is, beyond the range of the 

terrain. If it is out of bounds, as shown in Figure 3, grids 1, 2, 3, 7, and 8 are out of bounds; otherwise, 

𝑑𝑖𝑠(𝑖, 𝑗)  = ∞, proceed to Step 3.  

 

(1) 



 

 13 Volume 6; Issue 2 

 

 

 
Figure 3. Part of the grids on the boundary 

 

(3) Step 3: Determine whether the adjacent grid 1 is a grid in an even direction or in an odd direction. If it 

is in an even direction, 𝑑𝑖𝑠(𝑖, 𝑗) = 1; otherwise, proceed to Step 4. 

(4) Step 4: Determine whether one or both of the two even-numbered grids adjacent to the odd-numbered 

direction grid are obstacle grids. If yes, 𝑑𝑖𝑠(𝑖, 𝑗) = ∞; otherwise, 𝑑𝑖𝑠(𝑖, 𝑗) = √2. 

 

3. Multiple heuristics 

According to Li Li and others [25], based on the path planning requiring a short path length, only a few turns, 

a smooth path, and the adaptability to the environment, three factors should be considered: distance 

correction function, safety function, and smoothness function. The distance correction function increases 

the distance difference between the adjacent grids of the current grid and the target grid. When selecting 

the next grid to be walked on, increasing the path length is an inspiration to the ants. The safety function 

has a certain guiding effect on the turning of the UAV in flight. When the current direction of the UAV is 

the same as that of the previous moment, the safety function value of this direction will be larger. The 

smoothness function will inspire the drone to choose a gentle path. 

 

3.1. Distance correction function 

 

𝜑(𝑖, 𝑗) =
dis (𝑖)𝑚𝑎𝑥 − dis(𝑖, 𝑗))

dis (𝑖)𝑚𝑎𝑥 − dis (𝑖)𝑚𝑖𝑛 + 0.001
× 𝛾1 × 𝑔1 

 

dis(𝑖)𝑚𝑎𝑥is the maximum distance between the adjacent grids of the 𝑖-th grid and the center of the 

target grid; dis(𝑖)𝑚𝑖𝑛 is the adjacent grids of the 𝑖-th grid the minimum distance between the center of 

the grid and the target grid; φ(𝑖, 𝑗) is the corrected distance between the center of the 𝑗-th grid and the 

center of the target grid in the adjacent grids of the 𝑖-th grid; 𝛾 and 𝑔 are the correction parameters. 

 

3.2. Safety function 

If the projected course rotates more during the flight, it will not only increase the distance of the flight path, 

but also the degree of hazard. Therefore, it is necessary to reduce the number of turns as much as possible 

in path planning.  

 

𝑟𝑖𝑗(𝑡) =

{
 
 

 
 

𝑢

𝐽(allowed𝑖)
, 𝑖 = visited𝑖,

𝜃𝑢, 𝑑𝑟𝑧𝑖(𝑡) = 𝑑𝑟𝑖𝑗(𝑡),

(1 − 𝜃)𝑢

𝐽(allowed𝑖)
, 𝑑𝑟𝑣𝑖(𝑡) ≠ 𝑑𝑟𝑖𝑗(𝑡)

 

 

(2) 

(3) 
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In the formula, 𝐽(allowedi); 𝑟𝑖𝑗(𝑡) is the safety function; u is the heuristic constant; θ represents 

the importance of safety; visited𝑖 is the 𝑡-th iteration, the 𝑘-th ant goes to the current set of grid numbers 

that have been passed in grid 𝑖 ; 𝜈  is the label of the previous grid of the current 𝑖 -th grid, 𝜈 =
visited𝑖(end − 1) ; J(allowed𝑖)  represents the number of feasible adjacent grids of the current grid; 

𝑑𝑟𝑣𝑗(𝑡) represents the direction from the 𝜈-th to the 𝑖-th grid at the 𝑡-th iteration; 𝑑𝑟𝑖𝑗(𝑡) represents the 

𝑡-th iteration, the direction from the 𝑖-th grid to the 𝑗-th grid is turned. By comparing 𝑑𝑟𝑣𝑗(𝑡) and 𝑑𝑟𝑖𝑗(𝑡), 
if the two are the same, it will increase the possibility of continuing in the same direction in the following 

step, allowing the path to retain a straight line. 

 

3.3. Smoothness function 

 

ℎ(𝑖, 𝑗) =
ℎ𝑚𝑎𝑥 − |ℎ(𝑖) − ℎ(𝑗)|

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛 + 0.001
× 𝛾2 + 𝑔2 

 

ℎ𝑚𝑎𝑥 is the maximum value of the difference between the height of the current i-th grid and the height 

of its adjacent grid; ℎ𝑚𝑖𝑛 is the minimum value of the difference between the height of the current 𝑖-th 

grid and the height of its adjacent grid; ℎ(𝑖)Is the height of the grid. 

 

4. Improved ant colony algorithm 

The ant colony is required to select the next grid from the eight adjacent grids based on pheromone, heuristic 

function, and transition probability as well as to determine the nearest path from the starting point to the 

destination point. Before the ant colony begins to find a path, the pheromone of each grid is the same. The 

ant selects the next grid to walk according to the transition probability. The pheromone of the path will be 

left, and the pheromone of the path that has not been walked will be continuously reduced in the iteration. 

Ants on the shorter path locate food quickly, while ants on the longer path take a longer time to locate food. 

Therefore, the sum of pheromones left by ants on the shorter path is more, thus attracting more ants to take 

this path. The shortest path can then be found.  

 

4.1. Transition probability 

The transition probability of the ant colony algorithm is affected by two factors: the heuristic function and 

the pheromone left by ants. There are obstacles in the real environment. The multi-heuristic function 

enables ants to avoid obstacles, choosing a shorter path and reducing the number of turns. The path with 

more pheromones will attract ants to choose the path. When a large number of ants walk from the same 

path and fail to find the optimal path, the current path is considered as the global optimum; in that case, the 

ants fall into the local optimum. 

 

4.1.1. Adaptive heuristic function factor 

In order to improve the search efficiency of an optimal path and jump out of the local optimum, an adaptive 

heuristic function factor is introduced into the transition probability, as shown in equation (5). The adaptive 

heuristic function factor is the weighted reciprocal of the sum of the distance from the current grid to the 

starting grid as well as the distance from the current grid to the destination grid. Based on the distance 

between the grid to be walked and the target grid, add the distance from the grid to the starting grid; that is, 

when considering whether the grid to be walked is the best, the adaptive heuristic function factor is taken 

as one of the influencing factors of the transition probability to increase the overall consideration of the 

environment. 

 

(4) 
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   𝜇𝑖𝑗 =
1

𝑎(𝑑𝑗𝐸)
+

1

𝑏(𝑑𝐴𝑗 + 𝑑𝑗𝐸)
 

 

𝜇𝑖𝑗  is the adaptive heuristic function factor; 𝑑𝐴𝑗 represents the distance between the starting point 

and the grid to walk in; 𝐴 is the starting point; 𝑗 is the label of the grid to walk in; 𝑑𝑗𝐸  is the distance 

between the grid to walk in and the destination point; E is the destination point; a and b are the weight 

coefficients. The smaller the distance between the grid to walk in and the starting point as well as that 

between the grid to walk in and the destination point, the larger the adaptive heuristic function factor and 

the transition probability. In that case, a shorter path can be better selected. 

By drawing an adaptive heuristic function factor into the transition probability, the ants can select the 

shortest path and speed up the efficiency of searching the optimal path. 

 

4.1.2. Improved transition probability 

The transition probability has been improved as follows: 

 

𝑃𝑖𝑗
𝑘(𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽
𝜇𝑖𝑗

∑  𝑠∈ allowedk [𝜏𝑖𝑠(𝑡)]𝛼[𝜂𝑖𝑠(𝑡)]𝛽𝜇𝑖𝑠
, 𝑗 ∈  allowed 𝑘 ,

0, 𝑗 ∉  allowed 𝑘 ,

 

 

𝑘 is the label of ants; 𝑖 is the current grid number; 𝑗 is the following grid number; 𝑡 is the current 

number of iterations; τ  represents the pheromone strength; 𝜂  represents the heuristic function; 𝛼 

represents the degree factor of pheromone; 𝛽is the heuristic factor; allowed𝑘  is the grid that can be 

selected next. The ants at the back will be guided according to the pheromones left by the ants in front. The 

shorter the path is, the more pheromones will be left, but pheromones will evaporate at the same time. The 

updated pheromone is determined as follows: 

 

𝑆𝑘(𝑡) = 𝑋𝐿𝑘(𝑡) + 𝑌𝐹𝑘(𝑡) + 𝑍𝑇𝑘(𝑡)

Δ𝜏𝑖𝑗(𝑡) = {

𝑄

𝑆𝑘(𝑡)
, 𝑖, 𝑗 ∈  visited 𝑡𝑞

0, othervise, 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) +∑  

𝑀

𝑘=1

Δ𝜏𝑖𝑗(𝑡)

 

 

𝑆𝑘(𝑡) is the path comprehensive indicator in the t-th iterative of the k-th ant; the smaller the 𝑆𝑘(𝑡) is, 

the better the route; 𝐿𝑘(𝑡) is the path length; 𝐹𝑘(𝑡) is the mean square deviation of the grid height the ant 

has walked in; 𝑇𝑘(𝑡) is the number of turns of the path when the ant is walking; 𝑋, 𝑌, and 𝑍 are the 

adjustment coefficients of the above three factors; 𝑀  is the total number of ants; 𝜌  represents the 

pheromone volatilization factor; 𝑄 represents the pheromone constant; visited𝑡𝑞 is an ordered collection 

of grid labels passed of the k-th ant from the t-th iteration to the q-th grid.  

In this study, the initial pheromone adopts a fixed value and sets the range of pheromone to prevent 

ants from falling into the local optimum when searching for the optimal path. 

 
𝜏𝑖𝑗(𝑡) ⩾ 𝜏𝑖𝑗(𝑡)𝑚𝑖𝑛 

𝜏𝑖𝑗(𝑡) < 𝜏𝑖𝑗(𝑡)𝑚𝑎𝑥

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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At the same time, a bounded setting is formed for the pheromone volatilization factor, i𝜎𝜌 > 𝜌𝑚𝑖𝑛, 

then 𝜎𝜌 > 𝜌; otherwise, 𝜌 = 𝜌𝑚𝑖𝑛. 

 

4.2. Heuristic function 

The Euclidean distance from the current grid to its adjacent grid is added to the heuristic function as one of 

the factors affecting the heuristic function. Through the distance correction function, an adjacent grid 

closest to the target grid is selected from the adjacent grids of the current grid. The distance from the current 

grid to its adjacent grid is not exactly the same. In order to more accurately consider the influence of the 

path length on the ant colony’s selection of the following grid, the Euclidean distance 𝑑(𝑖, 𝑗) from the 

current grid to its adjacent grid is added to the heuristic function. When the distance 𝑑(𝑖, 𝑗) increases, the 

value 
1

ⅆ(𝑖,𝑗)
 will decrease, making multiple heuristic function values  𝜂𝑖𝑗(𝑡) decrease; the value of the 

transition probability is then influenced to form a closed-loop feedback. The heuristic function is shown in 

equation (12). 

 

𝜂𝑖𝑗(𝑡) =
1

𝑑(𝑖, 𝑗)
+ 𝜑(𝑖, 𝑗) + ℎ(𝑖, 𝑗) + 𝑟(𝑖, 𝑗) 

 

𝑑(𝑖, 𝑗)  is the Euclidean distance between the i-th grid center and the j-th grid center; 𝜑(𝑖, 𝑗)  is 

distance correction function; 𝑟(𝑖, 𝑗) is a security function; ℎ(𝑖, 𝑗) is the smoothness function. 

 

5. Algorithm simulation 

5.1. Algorithm flow 

(1) Step 1: Build the grid map and set the coordinates of the starting point A and destination point E. 

(2) Step 2: Initialize parameters, place all the ants on the starting point, and build a tabu table. 

(3) Step 3: Calculate the heuristic function and transition probability according to equations (12) and (6), 

respectively, to determine the next grid that the ant will walk in; fill in the number of the grid that has 

been passed by the ant in the tabu table; when the ant reaches the destination, it completes a search and 

records the optimal path of this iteration. 

(4) Step 4: Update the pheromone according to equation (9). 

(5) Step 5: Compare the optimal path of each iteration to determine the current optimal path. 

(6) Step 6: Judge whether the number of iterations reaches the maximum; if it reaches the maximum, output 

the result; otherwise, continue the iteration. 

According to the above steps, the pseudocode of the improved ant colony algorithm is given as follows: 

 

Algorithm: Improved Ant Colony 

 

(12) 
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The algorithm flow chart is shown in Figure 4. 

 

 
Figure 4. A flow chart of the improved ant colony algorithm 

 

5.2. Parameter setting 

In order to better compare the data, the parameters in this study are changed based on the parameters used 

in the comparison algorithm. Continue to run and debug according to experience to find the appropriate 

value. Table 1 shows the initialization parameters. 

 

 

 Start 

Build the map and set the coordinates for the starting point and 

destination point. 

Initialize each parameter to determine the total number of iterations. 

Place all the ants at the starting point. 

Determine the raster to go by the heuristic function and  

the transition probability. 

Does ant k reach the destination 

ponpoinypoint? 

 point?destination point? 

N 

k = M? 

N 

N 

Record the optimal path for this iteration and update the pheromone . 

Y 

Compare the optimal path of each iteration to determine the  

current optimal path. 

Y 

t = tmax? 

Y 

End 

Does ant k reach the destination point? 
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Table 1. Initialization parameters 

Algorithm lmax M p Q γ1 g1 γ2 g2 u θ 

Literature [25] 30 50 0.3 100 10 1 10 1 10 0.5 

Improved algorithm 

in this study 

30 50 0.3 100 10 1 10 1 10 0.5 

Algorithm 𝝉𝒊𝒋(𝒕)𝒎𝒊𝒏 𝝉𝒊𝒋(𝒕)𝒎𝒂𝒙 𝝆𝒎𝒊𝒏 𝝉𝒊𝒋(𝒐) X Y Z 

Literature [25] 10 40 0.2 20 1 0.1 0.1 

Improved algorithm 

in this study 

10 40 0.2 20 1 0.1 0.1 

 

5.3. Simulation comparison 

In order to improve the reliability of the transition probability, this study improves the transition probability, 

introduces the adaptive heuristic function factor, and takes the Euclidean distance from the current grid to 

its adjacent grid as one of the influencing factors of the heuristic function. As the technique employed in 

this study is a heuristic random optimization method, this study employs MATLAB to simulate and 

compare the improved algorithm to a literature [25] – Path Planning Based on Improved Ant Colony 

Algorithm with Multiple Inspired Factor – for 30 times, in order to evaluate its efficiency. The terrain 

environment is studied in the 10 × 10 and the 30 × 30 grid obstacle maps. 

 

5.3.1. Simulation in the 10 × 10 grid environment 

As shown in Figure 5, the dotted line represents the optimal path in the aforementioned literature [25], and 

the solid line is the optimal path of the improved ant colony algorithm in this study. It can be seen from the 

figure that most of the paths overlap. However, from the overall effect of the path, the solid line has four 

turns, while the dotted line has six turns. When the dotted line turns for the fourth time, the solid line 

continues to move forward in the direction of the original path, which is smooth. 

 

Optimal path 

 
Figure 5. Graph of optimal path comparison in the 10 × 10 grid environment 

 

Figure 6 shows the comparison of the optimal path length at different iterations. Initially, the solid line 

has a longer path length than the dotted line, but after iteration, the solid line finds a shorter path, whereas 

the dotted line does not even under the same number of iterations. 
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Figure 6. Graph of optimal path length in the 10 × 10 grid environment 

 

Figure 7 compares the mean square error of the optimal path with different iterations. The initial value 

of the solid line is the same as that of the dotted line. With the increasing number of iterations, it can be 

seen that the height mean square deviation of the solid line reaches a stable value within five iterations, 

whereas the dotted line only reaches a stable value with more than five iterations. 

 

 
Figure 7. Comparing the mean square deviation of the optimal path height in the 10 × 10 grid environment 

 

Figure 8 is a comparison of the number of turns of the optimal path at different iterations. It can be 

seen from Figure 8 that the number of turns of the solid line and the dotted line is the same under the same 

number of iterations. With the increasing number of iterations, the solid line with the adaptive heuristic 

function factor is introduced to obtain lesser number of turns, whereas the dotted line maintains the original 

number of turns, which shows that the improved ant colony algorithm increases the ant colony’s overall 

consideration of the path environment and jumps out of the local optimum. 

 

 
Figure 8. Comparison of number of turns of the optimal path in the 10 × 10 grid environment 
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Figure 9 shows a comparison of the comprehensive index and average comprehensive index of the 

optimal path at different iteration times. The comprehensive index is the comprehensive evaluation of the 

distance correction function, safety function, and smoothness function. The lower the index, the better the 

algorithm. As can be seen from Figure 9, the comprehensive index of the optimal path of the improved 

algorithm has a large value initially and converges to a stable value with increasing number of iterations. 

 

 
Figure 9. Comparison of the comprehensive indicators of the optimal path in the 10 × 10 grid environment 

 

It can be seen from Table 2 that the improved algorithm reduces the number of iterations, and the 

comprehensive index is relatively small. In order to reduce the influence of the randomness of the algorithm 

on the experimental results, the average value and variance of the optimal solution are calculated under the 

condition of running 30 times, as shown in the average value and variance of the optimal path length in 

Table 2. 

 

Table 2. Simulation results of the 10 × 10 grid environment 

Optimal path index Literature [25] algorithm Improved algorithm in this study 

Path length / m 15.6 15.6 

Height means square error / m 9.815 9.815 

Number of turns 6 4 

Comprehensive index 16.21 16.01 

Number of iterations of path length 6 2 

Optimal path length average 15.7000 15.6467 

Optimal path length variance 0.050000 0.063156 

 

5.3.2. Simulation in the 30 × 30 grid environment 

As shown in Figure 10, the dotted line represents the optimal path in the aforementioned literature [25], 

whereas the solid line represents the optimal path of the improved algorithm in this study. From Figure 10, 

it can be seen that in the second corner, the path of the dotted line is straight, while that of the solid line is 

diagonal; in addition, the length of the solid line is shorter compared to the dotted line. From the overall 

effect of the path, the solid line has 19 turns, whereas the dotted line has 16. Considering the integrity of 

the path, although the number of turns increases, the length of the path decreases. 
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Figure 10. Graph of optimal path comparison in the 30 × 30 grid environment 

 

Figure 11 shows the comparison of the optimal path length at different iterations. As can be seen from 

the figure, when the adaptive heuristic function factor is introduced, the path length of the improved 

algorithm is short at the beginning of the iteration. After the iteration, the shorter path is found and reaches 

a stable value. It can be concluded from the results that this algorithm increases the ability of ants to consider 

the integrity of the path and improves the efficiency of ants in searching for the optimal path. 

 

 
Figure 11. Comparison of optimal path length in the 30 × 30 grid environment 

 

Figure 12 is a comparison of the height mean square deviation of the optimal path at different iterations. 

The initial value of the solid line is the same as that of the dotted line. With the increasing number of 

iterations, it can be seen that the height mean square deviation of the solid line reaches a stable value within 

10 iterations, whereas the dotted line reaches a stable value only after 10 iterations; thus, it can be concluded 

that the solid line reaches a stable value at a faster rate. Figure 13 is a comparison of the number of turns 

of the optimal path at different iterations. 
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Figure 12. Comparison of mean square deviation of the optimal path height in the 30 × 30 grid environment 

 

As can be seen from Figure 13, due to the introduction of the adaptive heuristic function factor, the 

ants consider the integrity of the path while choosing a path; hence, the solid line is relatively flat, and its 

does not fluctuate excessively. 

 

 
Figure 13. Comparison of the number of turns of the optimal path in the 30 × 30 grid environment 

 

Figure 14 is a comparison of the comprehensive index and average comprehensive index of the optimal 

path at different iteration times. The lower the index, the better the algorithm. As can be seen from the 

figure below, the comprehensive index curve of the optimal path of the improved algorithm is relatively 

flat and tends to a stable value earlier with the increasing number of iterations. 

 

 
Figure 14. Comparison of the comprehensive indicators of the optimal path in the 30 × 30 grid environment 
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Based on the results of the path length, height mean square deviation, number of turns, comprehensive 

index, and iteration times, it can be seen from Table 3 that the path length found by the improved ant colony 

algorithm is relatively short, and its iteration times are relatively few in regard to its path length. 

 

Table 3. Simulation results of the 30 × 30 grid environment 

Optimal path index Literature [25] algorithm Improved algorithm in this study 

Path length / m 47.8 46.6 

Height means square error / m 10.260 8.225 

Number of turns 16 19 

Comprehensive index 49.51 48.51 

Number of iterations of path length 14 8 

Optimal path length average 49.1867 46.0267 

Optimal path length variance 40.040774327 5.693385127 

 

6. Conclusion 

When ants look for paths in the grid environment, the distance from the current grid to its adjacent grid is 

not exactly the same. In order to accurately consider the influence of path length on the selection of the 

following grid by the ant colony, the Euclidean distance from the current grid to its adjacent grid is added 

to the heuristic function in this study; in addition, this study increases the influencing factors of the heuristic 

function, forms a closed-loop feedback, and introduces the adaptive heuristic function factor into the 

transition probability. The distance from the starting point to the grid and finally to the destination point is 

taken as one of the factors affecting the transition probability of ants in their selection of the next grid, 

which increases the consideration of the overall environment, improves the pheromone and the pheromone 

volatilization factor, as well as reduces the impact of excessive or insufficient pheromones in their path 

selection, thus preventing ants from falling into the local optimum in the search process. 

In this study, the improved algorithm enhances the efficiency of search path. From the results, it can 

be appreciated that the improved algorithm decreases the length of the path, reduces the number of iterations, 

makes the path smoother, generates a more stable curve, and aids in reaching a stable value more rapidly. 

Adaptive multi-heuristic ant colony algorithm reduces the comprehensive index and average 

comprehensive index of UAV path planning. 

In this study, the three-dimensional environment of UAV is projected as two-dimensional for research, 

which simplifies the flight environment. In the future, the complexity of the flight environment needs to be 

magnified to improve the practical application of the algorithm. 
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