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1 Introduction
With the advent of the global Internet information era, 
communication and artificial intelligence have been 
developing rapidly in information fusion. Accurate 
motion recognition can provide a new way for human-
computer interaction, while artificial intelligence 
combined with motion recognition can conduct 
intelligent analysis of the collected information. 

This  paper  adopts  IMU motion recogni t ion 
technology based on mechanical learning. IMU, inertial 
measurement unit, is a device that uses accelerometer 
and gyroscope to measure the three-axis attitude Angle 
(or angular velocity) and acceleration of an object. In a 
narrow sense, an IMU is equipped with gyroscope and 
accelerometer on three orthogonal axes, with a total of 6 
degrees of freedom, to measure the angular velocity and 
acceleration of an object in three-dimensional space, 
which is known as "6-axis IMU". Broadly speaking, 
the IMU can add magnetometer to accelerometer and 
gyroscope to form the "9-axis IMU" which is now 
known to the public. 

Nowadays, IMU is not only used in professional 
navigation, but also widely used in military defense, 
aerospace, maritime and other fields, as well as daily 
WeChat positioning, smart phone, car/train, unmanned 
driving, smart home and other aspects.

2 Principle of Network Design
The RBF neural network is a radial basis function 
neural network and a forward neural network. The RBF 
neural network is a three-layer network structure. The 
principle of the RBF neural network is to map the input 
data from the input layer to the hidden layer. The output 
of the hidden layer is weighted by the connection 
weight of the RBF neural network, and finally the 
output layer is finally obtained. 

The RBF neural network has three important 
parameters, which are the center of the hidden layer 
basis function of the RBF neural network, the width, 
and the connection weight between the hidden layer and 
the output layer.

RBF neural network is a kind of feedforward neural 
network with excellent performance. RBF network can 
approximate arbitrary nonlinear functions with arbitrary 
precision, and has global approximation ability. The 
self-topology is compact, structural parameters can 
be separated and learned, and convergence speed is 
fast. The RBF network and fuzzy logic can achieve 
a good complementarity and improve the learning 
generalization ability of the neural network.

3 Features of the RBF network

(1) Forward network.
(2) The activation function of the hidden unit is 

usually a function with a locally accepted domain, 
that is, the hidden unit makes a meaningful non-
zero response only when the input falls into a small 
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designated area in the input space. Therefore, the 
RBF network is sometimes referred to as a Localized 
Receptive Field Network.

(3) The local accepting characteristics of the RBF 
network make the decision-making implied the concept 
of distance, that is, the network will respond only when 
the input is close to the accepted domain of the RBF 
network.

In the RBF network, the weight of the input layer to 
the output layer is fixed to 1, and the center and radius 
of the hidden layer RBF unit are usually predetermined, 
and only the weight between the hidden layer and the 
output layer is adjustable. The hidden layer of the RBF 
network performs a fixed nonlinear transformation, 
mapping the input space Rn to a new hidden layer 
space Rh, and the output layer realizes a linear 
combination in the new space. Obviously, due to the 
linear characteristics of the output unit, its parameter 
adjustment is extremely simple, and there is no local 
minimum problem.

(4) In addition, the research also shows that the 
influence of the nonlinear activation function form used 
by the RBF network on network performance is not 
critical, and the key factor is the selection of the basis 
function center.

4 Advantages of the RBF network
(1) It has the characteristics that there is no local 
minimum and the only best approximation problem 
exists.

(2) The RBF neural network has strong input and 
output mapping functions, and the theory proves that 
the RBF network in the forward network is the optimal 
network for completing the mapping function.

(3) The network connection weight is linear with the 
output.

(4) Good classification ability.
(5) The learning process converges quickly.

5 Procedure
Step1: Configure usage environment

In this project, we get the result by programming the 
code for the hardware Arduino 101. Arduino is the basic 
application program that we need use. What’s more, 
it is necessary to install some auxiliary application, 
such as development board for Arduino 101, library 
file Madgwick and Curie PME. Madgwick library is a 
quaternion gradient descent algorithm, which can be 

used to calculate the attitude of rigid body in strapdown 
inertial navigation system. A simple description of 
the data processing process is to obtain the detection 
data of acceleration and gyro, obtain the quaternion 
through calculation, and convert the quaternion into 
Euler Angle. Curie PME which have 128 neurons 
supports the algorithm about Radial Function and 
k-nearest Neighbors. It gives Curie the ability to learn 
and categorize like a human being, thereby eliminating 
some of the tedious programming process. 

Step2: Program processing
Preprocessing:
The sample rate for accelerometer is 200, the number 

of bytes that one neuron can hold is 128. Curie PME is 
a network of neurons consisting of 128 special storage 
units. Each storage unit can hold up to 128 bytes of 
data. Each time the learn function is called, the input 
new data is written to a neuron in the network. That is, 
Curie PME can perform 128 learning operations in the 
state of clearing and resetting. The maximum length 
of the data vector used for learning is 128 bytes. The 
number of processed samples can fit inside a neuron, 
such as 1 sample =accel x, y, z. We can set a function to 
convert ASCII characters A-Z into decimal values 1-26, 
and back again.

Setup: 
Starting the IMU and PME, and set the Accelerometer 

Rate as mentioned. Choosing the serial and button pin, 
then start training letters.

Start the loop:
Record IMU data while button is being held, and 

convert it to a suitable vector. Then use the PME to 
classify the vector. The parameter vector is the data 
to be learned, the parameter vector-length is the data 
length, and the parameter category is the corresponding 
classification category. Calling the learn function to tell 
Curie PME that the data vector belongs to the category. 
For instance, return a category from 1-26, representing 
a letter from A-Z. 

Well, Simple "moving average" filter, removes low 
noise and other small anomalies, with the effect of 
smoothing out the data stream.

We need to compress the stream of raw accelerometer 
data into 128 bytes, so it will fit into a neuron, while 
preserving as much of the original pattern as possible. 
Assuming there will typically be 1-2 seconds worth 
of accelerometer data at 200Hz, we will need to throw 
away over 90% of it to meet that goal. This is done in 2 
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ways: 
a. Each sample consists of 3 signed 16-bit values (one 

each for X, Y and Z). Map each 16-bit value to a range 
of 0-255 and pack it into a byte, cutting sample size in 
half.

b. Under sample. If we are sampling at 200Hz 
and the button is held for 1.2   seconds, then we'll 
have around 240 samples. Since we know now that 
each sample, once compressed, will occupy 3 of our 
neuron's 128 bytes, then we know we can only fit 

42 of those 240 samples into a single neuron (128 / 
3 = 42.666). So, if we take (for example) every 5th 
sample until we have 42, then we should cover most 
of the sample window and have some semblance of 
the original pattern.

c. Then we need input the signal. The signal is up to 
Arduino 101 where we designed a button. If we do not 
hold the button, digital receives low level. When the 
button is being held, digital receives high level. After 
that, the signal convert to array of three axis.


