
Distributed under creative commons license 4.0 Volume 3; Issue 6 1

Journal of Electronic Research and Application

Research Article

A Speaker Recognition System Based on Deep Learning
Haowei Li
Georgia Institute of Technology, Atlanta 30332, Georgia, United States.

Abstract: This paper lies in the field of digital signal
processing. This is a speech recognition system that
identifies the different speakers based on deep learning.
The invention consists of the following steps: Firstly,
we collect the voice data from different people.
Secondly, the data having been selected is preprocessed
by extracting their Mel Frequency Cepstral Coefficients
(MFCC) and is divided into training set and test set
randomly. Thirdly, we cut the training set into batches,
and put them into the convolutional neural network
which consists of convolutional layers, max pooling
layers and fully connected layers. After repeatedly
adjusting the parameters of the network such as learning
rate, dropout rate and decay rate, the model will reach
the optimal performance. Finally, the testing set is also
cut into batches and put into the trained neural network.
The final recognition accuracy rate is 70.23%. In brief,
the research can automatically recognize different
speakers efficiently.

Publication date: December, 2019
Publication online: 31 December, 2019
*Corresponding author: Haowei Li, zhaogechong@
xyzrgroup.com

1	 Introduction
Speech is an important biological information and the
most effective way of human communication. With the
rapid development of information technology, computer
is widely used in various aspects of human social life
and speech recognition can improve work efficiency
in many situations such as telephone communication,
mobile payments, machine control and airport security.
How to make the computer recognize the identity of the
speaker in the human-computer interaction is of great
significance to public safety, information security and
property security.

In the 1950s, a speech recognition system that
recognized 10 English digital pronunciations was
accomplished in Bell Labs, marking the beginning
of modern speech recognition research[1]. With the
wide application of computer technology in the field
of speech recognition, a series of important research
results have been obtained. The concept of Mel
Frequency Cepstral Coefficients (MFCC) was proposed
in the 1980s and is still an important feature parameter
in speech recognition[2]. The introduction of artificial
neural network (ANN) has injected new vitality into
speech recognition technology and promoted its
development[1].

Deep learning is a branch of machine learning
research which can be understood as the development
of ANN. It is essentially a method of training
deep structural models and it is also an algorithm
for modeling complex relationships between data
through multiple layers[3]. With the development of
high-performance computing platform and big data
processing technique, deep learning has become a
powerful method for speech recognition. In many
popular models, such as VGG, more convolutional
layers and pooling layers are needed, and the processing
of data is more complicated[4].

In this paper, TensorFlow is used to implement
the deep learning framework. We first collect voice
clips of different people in the environment of daily
life and use MFCC to preprocess the data. After that,
we randomly feed the training data set into a simpler
convolutional neural network in batches. Parameters
including learning rate, dropout rate and decay rate
are optimized by observing the model’s average
accuracy and variance of the testing set until the
model achieves the best performance. In addition,
the model can also be used in fields such as image
recognition.

Distributed under creative commons license 4.0 Volume 3; Issue 62

2	 Methods and Results

2.1	 Data Preprocessing

In this project, we collect voice data from 5 people.
All data is saved as WAV files and cut into 2000
segments of 7 seconds. The total amount of recording
for each person is more than 45 minutes. In order to get
sufficient data, each 7-second fragment is cut into 21
2-second parts with each part overlapping a little with
each other. Then, we obtain 8400 recording files for
each person. All files are renamed in form of X_Y where
X stands for different people and Y is its serial number.
This step helps us to load in data more efficiently.

Next, we extract Mel Frequency Cepstral Coefficients
(MFCC) for all 42000 segments. There are mainly three
steps to gain MFCC from WAV files.

(1) The spectrum of the signal is extracted by short-
time Fourier transform.

(2) The energy spectrum is obtained by squaring the
original spectrum and effective fragments is extracted
by bandpass filtering.

(3) The logarithm of the output signal is taken from
the filter and inverse Fourier transform is applied to get
MFCC. A simplification of the formula is as follow:

 (1)
L is the coefficient of step numbers, and M is the

number of triangle filters.
The final output of MFCC is a matrix of shape [Z×16]

where Z is related to the bit rate of the source and its
value should be more than 2000. However, we just need
the first [1021×16] characteristic values to get a matrix
of [32×32×16] for each fragment, so the surplus parts
are cut off. We append a label corresponding to each
person who recorded their voice. Finally, 80% of the
whole data is randomly chosen as the training set while
the other data composes the testing set. Both sets are
saved as MATLAB files (.mat) for further use in the
following steps[2].

Before training, we load the .mat files into storage to
do some preprocessing work.

(1) The sets are reshaped and labels are transformed
into one-hot encoding. For example, we transfer the
label of the first speaker to [1,0,0,0,0], and the label of
the third speaker to [0,0,1,0,0]

(2) All characteristic values are normalized to data
ranging between -1 and 1. The range of all characteristic
values is unknown at the beginning. We obtain the
maximum and minimum of the characteristic values

which are -112 and 85 respectively. So we normalize all
characteristic values by:

 (2)
N is the normalized value, and C is the original

characteristic value.
Both methods allow the computer to process the

characteristic values more efficiently.

2.2	 Network Design

The network has in sum four convolutional layers,
two max pooling layers and two fully connected
layers. The input each passes through convolution
layer 1, convolution layer 2, and max pooling layer
1, convolution layer 3, and convolution layer 4, max
pooling layer 2, fully connected layer 1 and fully
connected layer 2.

The function of convolutional layer is to extract
diverse features from input. The first convolutional
layer can only extract elementary features such as edge,
line and corner. More layers of network can extract
more complex features from low-level features through
iteration.

There are some parameters referred to the calculation
of convolutional layer that needs to be declared:

(1) Filter: the convolution kernel in convolutional
neural network.

(2) Depth: it controls the depth of the output unit,
which is equal to the number of filters.

(3) Stride: step size of the convolution kernel in
convolution

(4) Receptive Field: the width(height) of the convolutional
kernal.

Zero-padding: the value of zero-padding has two
situations: “Valid” means there is no padding, while
“Same” means the output image is the same size as the
input image. In this program we use “Same”.

The width(height) of the output data matrix can be
calculated by the formula below:

 (3)
where W is the width(height) of input, F is the

width(height) of the convolution kernel, P is the value
of zero-padding and S is step size.

After convolutional layers, an output with large
dimension is obtained. The function of the max pooling
layer is to cut the matrix into several regions, take the
maximum value in each region and combine them into
a new feature with a smaller dimension.

Distributed under creative commons license 4.0 Volume 3; Issue 6 3

Fully connected layer connects every node in one
layer to every node in the next layer. The input matrix
goes through a fully connected layer, and the activations
of nodes can thus be computed. Eventually, the classify
output is calculated.

We u s e R e c t i f i e d L i n e a r U n i t (R e L U) i n
convolutional layers and fully connected layer1. The
function of ReLU is

 (4)

The using of ReLU unit can effectively alleviate the
issue of gradient disappearance and overfitting.

The specific situation of each layer in this project is
introduced below.

(1) Convolutional Layer 1
The input data of convolutional layer 1 has the shape

[32×32×1]. It is convoluted by a [3×3×1] convolution
kernel. The convolution kernel moves through the
horizontal and vertical direction of the input data.
Its stride is 1 and zero-padding is 1. Therefore, the
width(height) of the output data is

The number of filters is 16, namely the depth of
output data is 16. As a result, the shape of output data is
[32×32×16].

After convolution, we input the result into ReLU unit.
After this procedure, the size of data is still [32×32×16].

(2) Convolutional Layer 2
The input data of convolutional layer 2 has the shape

[32×32×16]. It is convoluted by a [3×3×16] convolution
kernel. The convolution kernel’s stride is 1 and zero-
padding is 1. Therefore, same as the calculation of
convolution layer 1, the width(height) of the output data
is 32. The number of filters is also 16, namely the depth
of output data is 16. As a result, the shape of output data
is [32×32×16].

After convolution, we input the result into ReLU unit.
Still, after this procedure, the size of data is [32×32×16].

(3) Max Pooling Layer 1
In this invention, we set max pooling layer 1 with

filter of size [2×2], with a stride of 2. It slices the input
by 2 along both width and height. When doing max
operation every time, a 2×2 region will be taken and the
max value will be calculated to substitute the region.
The depth dimension remains the same. Therefore in the
project the initial input volume has the size [32×32×16],
and it is pooled with filter of size 2, stride 2. The output
of size [16×16×16] is finally produced.

(4) Convolutional Layer 3
The input data of convolutional layer 3 has the shape

[16×16×16]. It is convoluted by a [3×3×16] convolution
kernel. The convolution kernel’s stride is 1 and zero-
padding is 1. Therefore, the width(height) of the output
data is

The number of filters is 16, namely the depth of
output data is 16. As a result, the shape of output data is
[16×16×16].

After convolution, we input the result into ReLU unit.
After this procedure, the size of data is [16×16×16].

(5) Convolutional Layer 4
The input data of convolutional layer 4 has the shape

[16×16×16]. It is convoluted by a [3×3×16] convolution
kernel. The convolution kernel’s stride is 1 and zero-
padding is 1. Therefore, same as the calculation of
convolution layer 3, the width(height) of the output data
is 16. The number of filters is also 16, namely the depth
of output data is 16. As a result, the shape of output data
is [16×16×16].

After convolution, we input the result into ReLU unit.
The size of output data is still [16×16×16].

(6) Max Pooling Layer 2
Same as max pooling layer 1, max pooling layer 2

has the filter of size [2×2], with a stride of 2. When
doing max operation every time, it will substitute a 2×2
region with the max value of the four values. The depth
dimension remains the same. Therefore it changes the
input volume of size [32×32×16] with filter of size 2,
stride 2. The output size is [16×16×16].

(7) Fully Connected Layer1
After finishing convolution, we rearrange our data.

We reshape the data matrix from shape [batch, 8, 8, 16]
to [batch, 1024]. We took the batch size of training set
as 64, and test set’s as 400. Therefore for the training
data, the input matrix has the shape of [64, 1024] and
for test data it is [400, 1024]. Accordingly, the input
of the fully connected layer 1 has 1024 nodes, each of
them is connected to all nodes of the next layer.

Then we define the value of weights of fully
connected layer 1. We give each weight a value
according to the law of normal distribution. The values
of weights are stored in a matrix with the shape of [size×
size× channels, number of hidden nodes], which in this
program is [1024, 128]. We also define the referring
bias. The value is 0.1 with shape [number of hidden
nodes], namely [128].

Distributed under creative commons license 4.0 Volume 3; Issue 64

To calculate the output of fully connected layer 1, we
use the formula:

 (5)
in which y is the output of fully connected layer 1, w

is the weight matrix, x is the input matrix, and b is bias.
Here we choose ReLU as the active function. From this
procedure we get the output from the fully connected
layer 1. Its shape is [64, 128].

(8) Fully Connected Layer 2
We put the result above into the fully connected

layer 2 as its input. Similarly, we define the value of
weights of fully connected layer 2 according to normal
distribution. The value of weights are stored in a matrix
with the shape of [number of hidden nodes, number of
layers], which in this layer is [128, 5]. We also define
the referring bias. The value is 0.1 with shape [number
of layers], namely [3].

In this layer, we use Softmax function to calculate
the output. Softmax is a function that can output the
probability that each classification is taken. Its formula
is:

 (6)
where xi is the value of the i-th element. The output

gives out the probability of each label, namely the
probability for the data to be judged as label 0 to 4.

To adjust weights to optimal values, we use
back propagation. Back propagation is achieved by
calculating the loss of each nerve node, which is:

 (7)
where is the output of node, is the

input of node, is the weight of node, and is
the loss.

2.3	 Optimization

During the implementation of our project, we found
that the overfitting phenomenon occurred during the
running of the program. Overfitting is that the accuracy
of the training is very high, while the accuracy of the
test is low. So we have these several ways to solve the
problem.

(1) Regularization
Regularization has two forms- L1 loss and L2 loss.

L2 loss has a unique value, while L1 loss doesn’t
have this feature. We finally use L2 loss to optimize
because it can distinguish the result which is better. The
formulas for L1 loss and L2 loss are:

L1: (8)

L2: (9)

L2 can minimize the sum of the square of the
differences between the target value and the estimate
values. We use TensorFlow’s function to make L2 loss
work. The function utilizes the norm of L2 to calculate
tensor loss value.

(2) Dropout
Dropout is dropping some nodes randomly in fixed

probability at fully connected layer in training. If we
drop some nodes randomly, it may avoid overfitting.
We use TensorFlow’s dropout function to drop nodes.
The function can input tensor x and output value after
applying drop ratio.

(3) Update
We have three methods to update loss and find the

deep point.
The steepest descent method. We need to find a

minimum value, so we can use the method to iteration
search reversely in a fixed step size on the basis of
current point gradient.

Momenta. Momenta give a direction which combines
with the steepest descent method in parallelogram law.
And the final direction obeys the law.

Adam. Adam is one of the fastest algorithms in all
methods. It can find the deep point effectively.

Finally, we use Adam to update loss. Adam is more
effectively and wider than the other methods. For our
thousands of data, Adam can optimization the problem
directly.

Adam calculate gradient of time, the formula is:
 (10)

First, it calculates the exponential moving average of
the gradient, the formula is:

 (11)
Second, it calculates the exponential moving average

of the square of the gradient, the formula is:
 (12)

Third, we make and initialization which is 0, so
we need to correct average of the gradient and average
of the square of the gradient, the formula is:

 (13)

 (14)

Finally, Adam updates the parameter.
(4) Learning rate optimization
We hope the learning rate is neither high nor low.

TensorFlow’s decay function can keep the learning rate.
We use this function to make learning rate rise first then

Distributed under creative commons license 4.0 Volume 3; Issue 6 5

decay to make sure learning rate keeps medium. The
learning rate will decay once in decay rate at a stable
decay step. Our team use staircase decay mode, because
its scale is larger, and it is easier to reduce outfitting.

(5) Framework optimization
In file ‘dp_refines.py’, models after training are saved

to make us record. We also use API to simplify the code
so that we can change or modify the parameters easier.

2.4	 Training and Testing

Firstly, the file is converted into the form of mat
according to the ratio that train and test is 4:1 before the
training. The amount of collected data is 8400×5×16
and initial size of each data is defined as [32×32×1].
And then, to keep it from running out of memory, all
the data cannot be processed simultaneously, we take
the approach of batching data: define a variable of
‘batch size’ as the size of each batch, the computer only
processes one batch of data at a time. We use 400 as
the batch size of testing set, and 64 as the batch size of
training set. Therefore, testing shape is [400×32×32×1],

and training shape is [64×32×32×1]. After being
handled by the structure of convolution layers and max
pooling layers, the size of output data is changed to
[8×8×16]. The loss generated during the training is what
we use to judge the average accuracy rate of training
and the value of loss depends on the parameters-
base learning rate (initial valued 0.001). At the end of
training, we adopt the method of ‘Adam’ to optimize
result and reduce the loss generated. Besides, Softmax
function gets the probability that each data belongs to
each label. [4] The progress of testing is basically same
as training except data set. The accuracy of testing is
also presented in the confusion matrix, which shows the
accuracy rate of each label.

3	 Results
Table 1 shows the result when we take different

values of parameters. We can achieve the optimal
recognition accuracy of 70.23% when dropout rate
is 0.95, base learning rate is 0.001, decay rate is 0.3,
iteration steps is 20000, and λ is 5.0×10-4.

Table 1. Recognition Result

Dropout rate Base learning rate Decay rate Iteration steps λ average accuracy standard deviation

0.95 0.001 0.3 23000 5.00E-04 67.97 2.23

0.98 0.001 0.3 23000 5.00E-04 66.84 2.3

0.92 0.001 0.3 23000 5.00E-04 66.47 2.26

0.95 0.0018 0.3 23000 5.00E-04 67.35 2.26

0.95 0.0002 0.3 23000 5.00E-04 64.37 2.31

0.95 0.001 0.36 23000 5.00E-04 66.36 2.29

0.95 0.001 0.26 23000 5.00E-04 66.54 2.43

0.95 0.001 0.2 23000 5.00E-04 69.17 2.38

0.95 0.001 0.18 23000 5.00E-04 67.49 2.28

0.95 0.001 0.3 26000 5.00E-04 66.86 2.41

0.95 0.001 0.3 22000 5.00E-04 65.1 2.27

0.95 0.001 0.3 20000 5.00E-04 70.23 2.13

0.95 0.001 0.3 19000 5.00E-04 64.87 2.41

0.95 0.001 0.3 23000 5.00E-04 67.97 2.23

0.95 0.001 0.3 23000 6.00E-04 67.39 1.8

Distributed under creative commons license 4.0 Volume 3; Issue 66

4	 Conclusions

Our invention uses Mel Frequency Cepstral Coefficients
(MFCC) to process audio data shape into [32×32×1].
This approach makes data processing in subsequent
convolutional networks more efficient and faster. In this
invention, we randomly divide the original data into
training set and testing set proportionally, which ensures
the rigor and reliability of the experimental results.
Our invention introduces regularization and dropout to
avoid overfitting. The regularization makes the neural
network intend to learn smaller weights. The dropout
helps lessen dependence between neurons which makes
the network more robust. By optimizing the parameters,

our invention can effectively identify the speakers.

References

[1]	 Davis KH, Blddulph R, Balashek S. Automatic Recognition of
spoken Digits[J]. Journal of the Acoustical Society of America,
1952, 24(6): 637-642.

[2]	 Mahboob B, Tahira H, Khanum M, et al. Speaker Identification
Using GMM with MFCC[J]. International Journal of Computer
Science Issues (IJCSI), 2015, 12(2): 126-135.

[3]	 Hou YM, Zhou HQ, Wang ZY. Overview of speech
recognition based on deep learning. Application Research of
Computers,1001-3695(2017) 08-2241-06.

[4]	 Feng GH. Small-scale Picture Classification Based on
Convolutional Neural Network VGG[D]. Lanzhou University,
2018.

