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Abstract: Aim: To evaluate the clinical usability of mechanomyography (MMG) in the evaluation of upper-limb spasticity 

states of hemiplegia patients with likelihood ratio analysis. Methods: The MMG signals from the 30 hemiplegia patients’ 

biceps and triceps were recorded with three-dimensional wireless accelerometer (Trigno Wireless System, Delsys Inc), when 

they extended or bent their elbow passively. At the same time, the physiotherapist assessed the MAS (Modified Ashworth 

Scale) of all the patients who participated in the study and would be divided them into four groups based on the MAS values 

(MAS0, MAS1, MAS1+ and MAS2). The MMG sensors were built with triaxial accelerometers named as X, Y and Z that 

represent the muscle fibers lengthwise movement, the cross movement and the vertical the muscle moving direction, 

respectively. The root mean square (RMS) value of the MMG signal was calculated for analysis. Likelihood ratio analysis 

were used in the study. Results: All of the variables of the X, Y, Z axis of signals of MMG of BB and TB have related with 

muscle spasticity grading during passive elbow flexion in multinomial logistic regression (P=0.000, P<0.001). The regression 

coefficient of Y axis signal of MMG of BB is the largest. The 5 variables of the X, Y, Z axis of signals of MMG of BB and X, 

Y axis of TB have related with Muscle spasticity grading during passive elbow extension in multinomial logistic regression 

(P=0.000, P<0.001). The regression coefficient of Y axis signal of MMG of BB is the largest in equation and the Y axis signal 

of MMG of TB is second large. Conclusions: The effect of agonist is more than the antagonist during the MAS assessment, 

especially the muscle fibers cross movement and the vertical movement by the MMG assessment. 
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1. Introduction 

At present, there are many methods for assessing the spasticity of upper limbs of patients with hemiplegia. 

The contraction of muscle fibers is a three-dimensional dynamic process, and the muscle contraction 

vibration produces changes in the MMG signal of the myograph. In the previous study of the team, it was 

found that the myograph signal of elbow joint spasm in hemiplegic patients was correlated with the MAS 

score [6]. However, we did not further explore the reasons that may affect its correlation. The author guessed 

whether the myograph signals in the three different directions during muscle contraction all affect the MAS 

score. In response to this problem, this article intends to adopt the likelihood ratio based on the previous 

period. Statistical methods to explore the factors that affect the evaluation of upper limb muscle tension in 

patients with hemiplegia. 



 

Distributed under creative commons license 4.0 186 Volume 5; Issue 4 

 

 

2. Information and method 

2.1. General information 

From December 2019 to April 2021, 30 patients with hemiplegia after cerebrovascular disease were all 

inpatients from the Rehabilitation Department of Guangzhou Red Cross Hospital. The youngest was 27 

years old and the oldest was 80 years old. Among them, 22 were males and 8 were females; at an average 

age. During the course of 5 years, 16 cases were left hemiplegia and 14 cases were right hemiplegia. All 

the patients understood the experimental process and signed an informed consent form. 

2.1.1. Standard constrains  

(1) Unconsciousness and severe cognitive impairment. 

(2) Peripheral nerve damage in the upper limbs. 

(3) Restriction of movement of the affected shoulder and elbow joints due to trauma, fracture, tissue 

damage, contracture, etc. 

(4) Inability to maintain independent sitting and standing. 

(5) Complete and sensory aphasia. 

2.1.2. Exclusion criteria’s 

(1) Unconsciousness and severe cognitive impairment. 

(2) Peripheral nerve damage in the upper limbs. 

(3) Restriction of movement of the affected shoulder and elbow joints due to trauma, fracture, tissue 

damage, contracture, etc. 

(4) Inability to maintain independent sitting and standing. 

(5) Complete and sensory aphasia. 

 

2.2. Experimental data collection record 

2.2.1. Experimental environment 

All patients were treated by the same physician in the same room, the room temperature was about 22-26 

degrees. The patient was in a supine position, the shoulder joint of the affected limb was lifted at 90 degrees 

to the horizontal, and the elbow joint was in a natural anatomical position, completely relaxed. 

2.2.2. Experimental equipment 

German-made Trigno Wireless System delsys wireless acceleration sensor provided by Shenzhen Institute 

of Advanced Technology, Chinese Academy of Sciences. MMG sampling frequency was 148.1Hz, 16-bit 

resolution. Disposable double-sided electrode patch. 

2.2.3. Skin preparation 

The skin where the electrode was placed, was wiped back and forth with alcohol 5 times. 

2.2.4. Electrode placement 

The position of the wireless acceleration sensor was the measured muscle (the midpoint of the connection 

between the center of the biceps inner and outer head muscles and the midpoint of the connection between 

the center of the long head of triceps brachii to the centre of the short head of triceps brachii), allowing the 

X axis of the sensor to contract along the muscle fibers direction. Participants slowly performed passive 

elbow flexion and passive elbow extension on the test side, with an angular velocity of about 60 degrees/s, 

assessment of muscle tension, and recording of myograph at the same time. The doctor performed a 

modified Ashworth assessment with bare hands and used delsys to record the muscle signals of the biceps 

and triceps. Fixed the elbow joint with one hand and held the wrist joint with the other hand. The passive 

range of elbow joint motion was from 0 to 120 degrees. First, 3 passive elbow flexion was done, then 3 

passive elbow extension was done. Each passive activity should be completed at a uniform speed as much 

as possible, the time was 3 seconds, and the interval between the two was 8 seconds. 
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2.2.5. Record indicators and data processing 

Recorded the biceps and triceps muscle signals, analyzed them with MATLAB software, took 3 complete 

original signals, and performed root-mean-square (RMS) conversion with a period of 1s. In passive elbow 

extension and passive elbow flexion, the correlation between the RMS value of the muscle vibration of the 

biceps and triceps contraction and MAS was analyzed in the form of X, Y, and Z axes, and the X axis was 

the muscle fiber in the longitudinal movement direction, the Y axis was the transverse vibration direction 

of the muscle fibers, and the Z axis was the direction perpendicular to the muscle surface. 

 

2.3. Statistical analysis 

The RMS measurement value was expressed as (x̄±s). Using SPSS17.0 statistical software, the RMS values 

of the X, Y, and Z axes of passive elbow flexion and passive elbow extension MMG were tested with MAS 

respectively, and the significance level was set to α=0.05. 

 

2.4. Experimental results 

First, calculated the RMS value of the MMG of each level of the MAS group when the biceps and triceps 

were passive elbow flexion and passive elbow extension, and then calculated the X, Y, and Z three axes of 

the passive elbow flexion and passive elbow extension MMG. The RMS value was tested with the MAS 

for likelihood ratio. The results of passive elbow flexion are shown in Table C1. When passively extending 

the elbow, the results are shown in Table D1. Table C2. and Table D2. are the estimation results of multiple 

logit model parameters during passive elbow flexion and elbow extension. 

Likelihood ratio (LR) is an indicator that reflects authenticity, and it is a composite indicator that 

reflects both sensitivity and specificity. Likelihood ratio combines the characteristics of sensitivity and 

specificity, and is not affected by the prevalence. It is a relatively stable comprehensive index. 

 

Table C1. The likelihood ratio test of the six independent variables on the X, Y, and Z axes of passive 

elbow flexion sensors 1 and 2 

 

Effect 
-2 Log Likelihood of 

Reduced Model 

Chi-

Square 
df Sig 

Passive elbow flexion sensor 1 X 

axis signal 
134.458 23.306 3 .000 

Passive elbow extension sensor 2 X 

axis signal 
122.431 11.279 3 .010 

Passive elbow bending sensor 1Y 

axis signal 
165.862 54.711 3 .000 

Passive elbow extension sensor 2 Y 

axis signal 
145.747 34.596 3 .000 

Passive elbow flexion sensor 1 Z 

axis signal 
166.320 55.169 3 .000 

Passive elbow extension sensor 2 Z 

axis signal 
133.728 22.577 3 .000 
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Table C2. Multinomial logit model parameter estimation results of passive elbow flexion 

 

Effect 
MAS=0 MAS=1 MAS=1+ 

B Sig B Sig B Sig 

Passive elbow flexion sensor 1 X axis 

signal 
11.453 .593 -2.622 .901 5.642 .793 

Passive elbow extension sensor 2 X axis 

signal 
-32.897 .091 -32.603 .091 -12.729 .534 

Passive elbow bending sensor 1Y axis 

signal 
-206.083 .046 -219.327 .034 -165.761 .107 

Passive elbow extension sensor 2 Y axis 

signal 
-174.818 .046 -177.198 .043 -142.436 .104 

Passive elbow flexion sensor 1 Z axis 

signal 
-52.928 .071 -65.469 .026 -33.175 .263 

Passive elbow extension sensor 2 Z axis 

signal 
107.777 .068 102.736 .081 115.817 .050 

 

 

Table D1. The likelihood ratio test of the six independent variables of the X, Y, and Z axes of passive 

elbow extension sensors 1 and 2 

Effect 
-2 Log Likelihood 

of Reduced Model 
Chi-Square df Sig 

Passive elbow flexion sensor 1 X axis signal 162.797 16.179 3 .001 

Passive elbow extension sensor 2 X axis signal 156.804 10.185 3 .017 

Passive elbow bending sensor 1Y axis signal 155.478 8.859 3 .031 

Passive elbow extension sensor 2 Y axis signal 165.334 18.715 3 .000 

Passive elbow flexion sensor 1 Z axis signal 166.696 20.077 3 .000 

Passive elbow extension sensor 2 Z axis signal 150.585 3.966 3 .265 
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Table D2. Parameter estimation results of passive elbow extension multinomial logit model 

 

Effect 

MAS=0 MAS=1 MAS=1+ 

B Sig B Sig B Sig 

Passive elbow flexion sensor 1 X 

axis signal 
10.708 -12.211 -24.926 -20.160 -15.803 6.406 

Passive elbow extension sensor 2 X 

axis signal 
.252 .213 .025 .045 .022 .375 

Passive elbow bending sensor 1Y 

axis signal 
20.585 -4.530 -19.735 -16.971 -14.023 .669 

Passive elbow extension sensor 2 Y 

axis signal 
.023 .580 .065 .087 .034 .923 

Passive elbow flexion sensor 1 Z 

axis signal 
16.350 4.250 -16.101 -6.338 -1.742 1.711 

Passive elbow extension sensor 2 Z 

axis signal 
.069 .616 .136 .547 .814 .806 

 

Table C1. shows the likelihood ratio test results show that these six variables are related to the 

classification of passive elbow flexion spasticity (p<0.05). In the logit parameter equation of Table C2., it 

is shown that in level 0, the predictive variables with significant significance are s1y_eb and s2y_eb. In 

level 1, significant predictors include s1y_eb, s2y_eb, and s1z_eb. In level 1+, the significant predictor 

variable is s2z_eb. It can be seen from the size of the coefficient that the regression coefficient of the y-axis 

is larger, which indicates that the lateral movement has a greater influence on the classification of spasticity. 

Table D1. shows the likelihood ratio test results, it shows that these five variables (passive elbow 

extension sensor 1 X-axis, Y-axis, Z-axis signal, passive elbow extension sensor 2 X-axis, Y-axis signal) 

and passive elbow extension spasticity state classification that there is a relationship (p<0.05). Furthermore, 

it suggests that the independent variable passive elbow extension sensor 2 Z-axis signal may have nothing 

to do with the degree of spasticity during passive elbow extension (p=0.265), but it may be caused by a 

non-linear relationship between the two, but it doesn’t matter. 

Table D2. from the Logit parameter equation, it can be seen that in level 0, the significant predictor 

variable is passive elbow extension sensor 1. Axis signal, passive elbow extension sensor 2 Y-axis signal, 

passive elbow extension sensor 1 Z-axis signal. In level 1, significant predictors include passive elbow 

extension sensor 1 X-axis signal, passive elbow extension sensor 1 Z-axis signal. In level 1+, there is no 

significant predictor variable.  

2.4.1. Note 

(1) s1 means, the sensor is attached to the skin surface of the biceps brachii. 

(2) s2 means, the sensor is attached to the skin surface of the triceps brachii. 

(3) x behind s1 and s2 represents the direction along the muscle contraction. 
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(4) y behind s1 and s2 represents the direction perpendicular to the muscle contraction direction.  

(5) z behind s1 and s2 represents the direction perpendicular to the x-axis. 

(6) eb stands for passive elbow flexion. 

(7) ee stands for passive elbow extension. 

 

3. Discussion 

The MMG signal was mainly manifested in the mechanics as the mechanical vibration generated by the 

muscle fiber after activating the motion unit and contracting, which was generally the a low-frequency 

lateral vibration of skeletal muscle fiber movement [7-8]. The greater the muscle contraction force, the greater 

the amplitude of MMG RMS [8]. The MAS score (modified Ashworth score) was a subjective assessment 

method that was currently used in clinical practice. It was used by the physician to passively move the 

patient’s joints to stretch the muscles of the spasm, and feel the range and intensity of the joint movement 

resistance to determine the degree of spasticity.  

The team’s previous research found [6] that during the MAS evaluation process, the three-dimensional 

space of the muscle group, namely the part of the muscle fiber vibration in the X, Y, and Z axis, were 

correlated with the MAS score. The score of MAS in passive elbow flexion was affected by both the active 

biceps brachii muscles and the triceps antagonist muscles. However, in the process of completing the 

passive elbow flexion, the active biceps brachii muscles play a more important role. The elements of this 

were not statistically significant to the correlation between the movement displacement of the muscle fibers 

of the triceps brachii muscle and its lateral vibration, but it was related to the vertical vibration of the muscle, 

and the relationship was the greatest. In passive elbow extension, only the Y-axis and Z-axis of the active 

muscles are correlated with the MAS score.  

In order to better explain that there was indeed a correlation between MMG signal and MAS score, and 

that there should be one or several factors in the directed axis of muscle fiber movement that have the 

greatest impact on MAS score. Two-class logic regression and multinomial logistic regression was 

commonly used in medical research, especially in epidemiological research. At present, the MAS research 

on spasticity in China and abroad has not found the use of multinomial variable logistic regression analysis, 

but the author believes that the MAS score starts from level 0, level 1, level 1+, level 2, and level 3. This is 

a continuous grade variable; completely ordinal multinomial logistic regression can be used to establish a 

logistic regression equation to analyze the largest contributor to the MAS score. 

Logistic regression for ordered classification uses a multinomial logistic model. If the dependent 

variable Y has M values (that is, Y has M categories), one of the categories is used as the reference category 

(baseline category), and the other categories are the same, then in comparison, M-1 non-redundant logistic 

transformation models can be generated. For example, the dependent variable is M category, N independent 

variables X, the logistic model uses Y=M as the Y reference category, then for the Y=i category, the logistic 

transformation model is: 

 

For the reference category Y=M, G=0, all the coefficients in the model are 0. In this study, the spasticity 

of the collected subjects has four levels: 0, 1, 1+, and 2 For multiple logistic model reference classes, it is 

generally necessary to consider whether its meaning is clear, and its sample size cannot be too different 

from others. The higher MAS level 2 is clinically easier to diagnose, with less contradictions and smaller 

standard deviation. It is also the middle level in the entire MAS score. Therefore, the category with 

spasticity level 2 is used as the reference category, namely MAS =2 is the reference group. 
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It can be seen that in the process of passive elbow flexion, the likelihood ratio test results in Table C1. 

and passive elbow extension Table D1. indicate that there is a relationship between the MMG signal and 

the MAS classification of elbow spasticity (p<0.05). Although shown in Table D1. that the independent 

variable passive elbow extension sensor 2 Z-axis signal may have nothing to do with the degree of spasticity 

during passive elbow extension (p=0.265), it may be caused by the non-linear relationship between the two, 

which is not unrelated. In addition, from the logit parameter equation in Table C2. it is shown that in level 

0, the significant predictor variables are the Y-axis signals of passive elbow extension sensors 1 and 2 (the 

amplitude of the lateral vibration of the biceps and triceps is significant “significance”) In level 1, the 

predictive variables with significant significance include passive elbow extension sensor 1 and 2 Y-axis 

signal, passive elbow extension sensor 1 Z-axis signal, that is, one more factor of the vertical vibration 

direction signal of the active muscle than level 0 This is basically close to the result of spearman correlation 

analysis of MMG signal and MAS score. 

Similar results were found in passive elbow extension. At the same time, it was observed that regardless 

of elbow extension or elbow flexion, the regression coefficient B in the equation is the sensor 1Y axis signal> 

sensor 2Y axis signal> sensor 2Z axis signal, which shows that the MAS score follows the relationship 

between the lateral vibration of muscles is relatively large, that is, the lateral vibration of muscles has a 

greater impact on the score of MAS. The RMS values of the MMG of the biceps brachii and triceps brachii 

in Table 1. of the MMG amplitudes of the spearman correlation analysis found in the previous period are 

higher than those of the X-axis and Z-axis, and gradually increases with the level. This is consistent with 

the electromyographic signal characteristics of the active and antagonist muscles in passive elbow flexion 

done by Mingyuan Guo of Southern Medical University. It further shows that there is a correlation between 

the MMG signal and the MAS score, and the lateral vibration of the muscle is an important factor affecting 

the MAS score and the severity of elbow joint spasm. This may provide us with a new path for the 

subsequent clinical treatment of spasticity.  
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