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Abstract: In this paper, the dynamical behavior of a reaction-diffusion system with quiescence in a closed environment is 
investigated. The global existence of the solution is obtained by the upper and lower solution method, and the dissipative 
structure of the system is derived by constructing Lyapunov functions. 
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1. Introduction 
Reaction-diffusion system can be coupled for two different dynamics acting on the same space in several ways. 
If one of the two vector fields disappears, then a given dynamics is coupled to a quiescent phase. Quiescent 
phases appear in different ways in population models and under different names such as quiescent state [1], 
dormancy [2], resting phase [3], and ecological refuge. Generally, these phases may have drastic effects on the 
dynamics.

Introducing quiescent phases will suppress oscillations and even make them disappear [4]. Hadeler and 
Lewis [5] presented and discussed briefly the following model:
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The model (1) describes a population in which the individuals alternate between mobile and non-mobile 
states, and only the mobile reproduces, where f is the reproduction function, γ1(γ2) stands for the conversion rate 
from mobile(non-mobile) to non-mobile(mobile). For invertebrates living in small ponds in arid climates, such 
behavior is typical, which dry up and reappear under the influence of rainfall. However, Hadeler and Lewis did 
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not show further mathematical analysis. We will supplement some mathematical results in this paper.
Inspired by the study [5], the purpose of this paper is to consider the system (1) with the non-negative initial 

conditions:















Ω∈≥=≥=

>Ω∂∈=
∂
∂

>Ω∈−=
∂
∂

>Ω∈+−+∆=
∂
∂

,,0)()0,( ,0)()0,(

,0  ,,0

,0  ,,

,0  ,,)(

00

21

21

xxvxvxuxu

tx
n
u

txvu
t
v

txvuufuD
t
u

γγ

γγ

　　　　　　　　　　　　　　(2)

where Ω is a bounded domain in with a smooth boundary ; is the unit outer normal, and no 
flux boundary condition is imposed, which explains that the system is closed. f denotes the general growth non-
linearity with carrying capacity. In practical problems, suppose that the growth function satisfies 
the following condition:

 						      　　　　　　　　　　　　　    (3)

and there exists K > 0 such that f ( u ) < 0 for all u > K,
where K is the carrying capacity of species.

2. Global existence of solutions
The existence, boundedness, and uniqueness of globally defined solutions for the reaction-diffusion system (2) 
are shown in this section.

Firstly, we consider the associated ordinary differential equation (ODE) system:

        　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　  　(4)

for t >0 . The positive quadrant of the phase plane  is invariant, which is easy to verify. 
The following Lemma guarantees that the system (4) is bounded.

Lemma 2.1. Suppose that f satisfies (3), then any solution of (4) with positive initial value is positive and 
bounded.

Proof. Since  and  are invariant manifolds of (4), then the first quadrant is an 
invariant region for (4). Therefore, the solutions of (4) with the initial values u( 0 )>0 and v( 0 )>0 are positive.

In addition, the two equations of (4) and the condition (3) also show that is a positive 
invariant rectangle for (4) for any K ≥ K. Therefore, the solution of (4) is bounded.                                                                                  

Now, we demonstrate the global existence of solutions for (2).

Theorem 2.2. Assume that  f satisfies (3) and  is a bounded domain with smooth 
boundary.
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(a)	 If then (2) has a unique solution  such that for 

 and  ;

(b) ,  where C1 and C2 are constants only depending on γ1,γ2 K and the initial value 

.
Proof. The existence of a unique local solution of (2) can be obtained by referring to Theorem 14.2 [6] or 

Theorem 3.3.3 and Exercise 3 [7].

Define ,),(     ,)(),( 2121 vuvuNvuufvuM γγγγ −=+−=

then  and  in  , furthermore, (2) is a quasi-monotone system [8,9]. 

Let and , where is the unique solution to (4) with 

the initial value  where  and , it shows and . 

Consider the following problem:
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Thus,  i t  follows from the definit ion of lower/upper-solution that  and 

are the lower-solution and upper-solution to (2) respectively, which can refer to 

Definition 8.1.2 [8] or Definition 5.2.1 [9]. Therefore, it can be concluded that (2) has a unique globally defined 

solution which satisfies from Theorem 8.3.3 [8] or Corollary 

5.2.11 [9]. The strong maximum principle implies that  when t > 0  for all . Moreover, 

from Lemma 2.1., we can see that and 

The boundedness of  implies the global existence of the solutions, which completes the 

proof of parts (a) and (b).
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3. Dissipative structure
Now, we can further acquire the dissipative property of the reaction-diffusion system (2).

Theorem 3.1. The system (2) is dissipative and there is no periodic solution.
Proof. Let

      　　　　　　　　　 　  (5)

where  . Then

  　　　  　 (6)

which gives us a hint of what we might expect.
Notice that if u is a steady state of if and only if  is a steady state of (2). 

Regarding the steady states of (2), we obtain the following results:
Corollary 3.2. 
(i)	 If , then and ,  which implies that (u, v) is a steady state of (2).
(ii)	 If u is the unique steady state solution of , then  is globally asymptotically 

stable for system (2).
Remark 3.3. For a class of systems that simulate the random dispersal of the pollutant, but ignore 

the small mobility of the infected population. By applying the phase plane method to the endpoints of one-
dimensional intervals under homogeneous Dirichlet boundary conditions, the steady-state bifurcation pattern is 
analyzed in detail, while our approach is quite different and more representative.
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